On a Differential Game in a Stochastic System
We study the game problem of approach for a system whose dynamics is described by a stochastic differential equation in a Hilbert space. The main assumption on the equation is that the operator multiplying the system state generates a strongly continuous semigroup (a semigroup of class subscript C...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Steklov Institute of Mathematics 2020-08, Vol.309 (Suppl 1), p.S185-S198 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S198 |
---|---|
container_issue | Suppl 1 |
container_start_page | S185 |
container_title | Proceedings of the Steklov Institute of Mathematics |
container_volume | 309 |
creator | Vlasenko, L. A. Rutkas, A. G. Chikrii, A. A. |
description | We study the game problem of approach for a system whose dynamics is described by a stochastic differential equation in a Hilbert space. The main assumption on the equation is that the operator multiplying the system state generates a strongly continuous semigroup (a semigroup of class
subscript
C
0
). Solutions of the equation are represented by a stochastic variation of constants formula. Using constraints on the support functionals of sets defined by the behavior of the pursuer and the evader, we obtain conditions for the approach of the system state to a cylindrical terminal set. The results are illustrated with a model example of a simple motion in a Hilbert space with random perturbations. Applications to distributed systems described by stochastic partial differential equations are considered. By taking into account a random external influence, we consider the heat propagation process with controlled distributed heat sources and sinks. |
doi_str_mv | 10.1134/S0081543820040203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437883779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437883779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fb35b0ada7f331f5e02f30f13d35e65185441404767e82a81e55866d6cdef0c63</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeA5-hMZv_1KFVbodBD9By2yaymNEndTQ_99iZU8CCeBt77vTfwhLhFuEck-ZADWFSSbAYgIQM6ExNUhKnVoM7FZLTT0b8UVzFuB0gZOZuIdN0mLnmqvefAbV-7XbJwDSf1KOd9V3662Ndlkh9jz821uPBuF_nm507F-8vz23yZrtaL1_njKi0JdZ_6DakNuMoZT4ReMWSewCNVpFgrtEpKlCCNNmwzZ5GVslpXuqzYQ6lpKu5OvfvQfR049sW2O4R2eFlkkoy1ZMxsoPBElaGLMbAv9qFuXDgWCMW4SvFnlSGTnTJxYNsPDr_N_4e-Ac8yYIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437883779</pqid></control><display><type>article</type><title>On a Differential Game in a Stochastic System</title><source>SpringerNature Journals</source><creator>Vlasenko, L. A. ; Rutkas, A. G. ; Chikrii, A. A.</creator><creatorcontrib>Vlasenko, L. A. ; Rutkas, A. G. ; Chikrii, A. A.</creatorcontrib><description>We study the game problem of approach for a system whose dynamics is described by a stochastic differential equation in a Hilbert space. The main assumption on the equation is that the operator multiplying the system state generates a strongly continuous semigroup (a semigroup of class
subscript
C
0
). Solutions of the equation are represented by a stochastic variation of constants formula. Using constraints on the support functionals of sets defined by the behavior of the pursuer and the evader, we obtain conditions for the approach of the system state to a cylindrical terminal set. The results are illustrated with a model example of a simple motion in a Hilbert space with random perturbations. Applications to distributed systems described by stochastic partial differential equations are considered. By taking into account a random external influence, we consider the heat propagation process with controlled distributed heat sources and sinks.</description><identifier>ISSN: 0081-5438</identifier><identifier>EISSN: 1531-8605</identifier><identifier>DOI: 10.1134/S0081543820040203</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computer networks ; Differential games ; Heat sinks ; Heat sources ; Hilbert space ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial differential equations ; Stochastic systems</subject><ispartof>Proceedings of the Steklov Institute of Mathematics, 2020-08, Vol.309 (Suppl 1), p.S185-S198</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fb35b0ada7f331f5e02f30f13d35e65185441404767e82a81e55866d6cdef0c63</citedby><cites>FETCH-LOGICAL-c316t-fb35b0ada7f331f5e02f30f13d35e65185441404767e82a81e55866d6cdef0c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0081543820040203$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0081543820040203$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vlasenko, L. A.</creatorcontrib><creatorcontrib>Rutkas, A. G.</creatorcontrib><creatorcontrib>Chikrii, A. A.</creatorcontrib><title>On a Differential Game in a Stochastic System</title><title>Proceedings of the Steklov Institute of Mathematics</title><addtitle>Proc. Steklov Inst. Math</addtitle><description>We study the game problem of approach for a system whose dynamics is described by a stochastic differential equation in a Hilbert space. The main assumption on the equation is that the operator multiplying the system state generates a strongly continuous semigroup (a semigroup of class
subscript
C
0
). Solutions of the equation are represented by a stochastic variation of constants formula. Using constraints on the support functionals of sets defined by the behavior of the pursuer and the evader, we obtain conditions for the approach of the system state to a cylindrical terminal set. The results are illustrated with a model example of a simple motion in a Hilbert space with random perturbations. Applications to distributed systems described by stochastic partial differential equations are considered. By taking into account a random external influence, we consider the heat propagation process with controlled distributed heat sources and sinks.</description><subject>Computer networks</subject><subject>Differential games</subject><subject>Heat sinks</subject><subject>Heat sources</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Stochastic systems</subject><issn>0081-5438</issn><issn>1531-8605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLeA5-hMZv_1KFVbodBD9By2yaymNEndTQ_99iZU8CCeBt77vTfwhLhFuEck-ZADWFSSbAYgIQM6ExNUhKnVoM7FZLTT0b8UVzFuB0gZOZuIdN0mLnmqvefAbV-7XbJwDSf1KOd9V3662Ndlkh9jz821uPBuF_nm507F-8vz23yZrtaL1_njKi0JdZ_6DakNuMoZT4ReMWSewCNVpFgrtEpKlCCNNmwzZ5GVslpXuqzYQ6lpKu5OvfvQfR049sW2O4R2eFlkkoy1ZMxsoPBElaGLMbAv9qFuXDgWCMW4SvFnlSGTnTJxYNsPDr_N_4e-Ac8yYIE</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vlasenko, L. A.</creator><creator>Rutkas, A. G.</creator><creator>Chikrii, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>On a Differential Game in a Stochastic System</title><author>Vlasenko, L. A. ; Rutkas, A. G. ; Chikrii, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fb35b0ada7f331f5e02f30f13d35e65185441404767e82a81e55866d6cdef0c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer networks</topic><topic>Differential games</topic><topic>Heat sinks</topic><topic>Heat sources</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Stochastic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vlasenko, L. A.</creatorcontrib><creatorcontrib>Rutkas, A. G.</creatorcontrib><creatorcontrib>Chikrii, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vlasenko, L. A.</au><au>Rutkas, A. G.</au><au>Chikrii, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Differential Game in a Stochastic System</atitle><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle><stitle>Proc. Steklov Inst. Math</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>309</volume><issue>Suppl 1</issue><spage>S185</spage><epage>S198</epage><pages>S185-S198</pages><issn>0081-5438</issn><eissn>1531-8605</eissn><abstract>We study the game problem of approach for a system whose dynamics is described by a stochastic differential equation in a Hilbert space. The main assumption on the equation is that the operator multiplying the system state generates a strongly continuous semigroup (a semigroup of class
subscript
C
0
). Solutions of the equation are represented by a stochastic variation of constants formula. Using constraints on the support functionals of sets defined by the behavior of the pursuer and the evader, we obtain conditions for the approach of the system state to a cylindrical terminal set. The results are illustrated with a model example of a simple motion in a Hilbert space with random perturbations. Applications to distributed systems described by stochastic partial differential equations are considered. By taking into account a random external influence, we consider the heat propagation process with controlled distributed heat sources and sinks.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0081543820040203</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0081-5438 |
ispartof | Proceedings of the Steklov Institute of Mathematics, 2020-08, Vol.309 (Suppl 1), p.S185-S198 |
issn | 0081-5438 1531-8605 |
language | eng |
recordid | cdi_proquest_journals_2437883779 |
source | SpringerNature Journals |
subjects | Computer networks Differential games Heat sinks Heat sources Hilbert space Mathematics Mathematics and Statistics Operators (mathematics) Partial differential equations Stochastic systems |
title | On a Differential Game in a Stochastic System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Differential%20Game%20in%20a%20Stochastic%20System&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.au=Vlasenko,%20L.%20A.&rft.date=2020-08-01&rft.volume=309&rft.issue=Suppl%201&rft.spage=S185&rft.epage=S198&rft.pages=S185-S198&rft.issn=0081-5438&rft.eissn=1531-8605&rft_id=info:doi/10.1134/S0081543820040203&rft_dat=%3Cproquest_cross%3E2437883779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437883779&rft_id=info:pmid/&rfr_iscdi=true |