Axial Load Transfer Analyses of Energy Piles at a Rock Site

An axial load-transfer analysis for energy piles is presented in this study that incorporates empirical models for estimating the side shear resistance and end bearing capacity in rock along with associated normalized stress-displacement curves. The analysis was calibrated using results from field e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2020-10, Vol.38 (5), p.4711-4733
Hauptverfasser: Moradshahi, Aria, Khosravi, Ali, McCartney, John S., Bouazza, Abdelmalek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4733
container_issue 5
container_start_page 4711
container_title Geotechnical and geological engineering
container_volume 38
creator Moradshahi, Aria
Khosravi, Ali
McCartney, John S.
Bouazza, Abdelmalek
description An axial load-transfer analysis for energy piles is presented in this study that incorporates empirical models for estimating the side shear resistance and end bearing capacity in rock along with associated normalized stress-displacement curves. The analysis was calibrated using results from field experiments involving monotonic heating of three 15.2 m-long energy piles in sandstone. Analyses of the field experiments indicates that poor cleanout of the excavations led to an end restraint smaller than that expected for a clean excavation in sandstone. Specifically, end bearing parameters representative of cohesionless sand were necessary to match the load-transfer analysis to the field experiment results. Parametric evaluations demonstrate the importance of using appropriate rock- or soil-specific empirical models when estimating the side shear resistance and end bearing capacity of energy piles. Specifically, the end bearing capacity and side shear resistance in rock are greater than in soils, leading to more restraint and greater thermal axial stresses. The stiffer side shear restraint in rock was also found to lead to a less nonlinear distribution in thermal axial stress along the length of the energy pile.
doi_str_mv 10.1007/s10706-020-01322-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437644703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437644703</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-e19a9be94fa9c4665c088b50a0fe979699f4c8833bd310cef4fd1c722bdff9c13</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEf_gKuA6-jLR5MGV2UYR2FA0XEd0jQZOtZ2TDrg_HurFdy5ely45_I4CF1SuKYA6iZRUCAJMCBAOWMkP0IZzRUnNGf6GGWgJRBOC3aKzlLaAgCTQDN0W342tsWr3tZ4HW2Xgo-47Gx7SD7hPuBF5-PmgJ-adsx2wBY_9-4NvzSDP0cnwbbJX_zeGXq9W6zn92T1uHyYlytiuWAD8VRbXXktgtVOSJk7KIoqBwvBa6Wl1kG4ouC8qjkF54MINXWKsaoOQTvKZ-hq2t3F_mPv02C2_T6OPybDBFdSCAV8bLGp5WKfUvTB7GLzbuPBUDDfkswkyYySzI8kk48Qn6A0lruNj3_T_1Bf_p1oDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437644703</pqid></control><display><type>article</type><title>Axial Load Transfer Analyses of Energy Piles at a Rock Site</title><source>SpringerLink Journals</source><creator>Moradshahi, Aria ; Khosravi, Ali ; McCartney, John S. ; Bouazza, Abdelmalek</creator><creatorcontrib>Moradshahi, Aria ; Khosravi, Ali ; McCartney, John S. ; Bouazza, Abdelmalek</creatorcontrib><description>An axial load-transfer analysis for energy piles is presented in this study that incorporates empirical models for estimating the side shear resistance and end bearing capacity in rock along with associated normalized stress-displacement curves. The analysis was calibrated using results from field experiments involving monotonic heating of three 15.2 m-long energy piles in sandstone. Analyses of the field experiments indicates that poor cleanout of the excavations led to an end restraint smaller than that expected for a clean excavation in sandstone. Specifically, end bearing parameters representative of cohesionless sand were necessary to match the load-transfer analysis to the field experiment results. Parametric evaluations demonstrate the importance of using appropriate rock- or soil-specific empirical models when estimating the side shear resistance and end bearing capacity of energy piles. Specifically, the end bearing capacity and side shear resistance in rock are greater than in soils, leading to more restraint and greater thermal axial stresses. The stiffer side shear restraint in rock was also found to lead to a less nonlinear distribution in thermal axial stress along the length of the energy pile.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-020-01322-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Axial loads ; Axial stress ; Bearing capacity ; Civil Engineering ; Constraints ; Construction ; Cooling ; Dredging ; Earth and Environmental Science ; Earth Sciences ; Empirical analysis ; Energy ; Estimation ; Excavation ; Experiments ; Field tests ; Geotechnical Engineering &amp; Applied Earth Sciences ; Geothermal power ; Heat exchangers ; Hydrogeology ; Load transfer ; Original Paper ; Piles ; Rocks ; Sandstone ; Sedimentary rocks ; Shear ; Shear strength ; Soil ; Stress concentration ; Terrestrial Pollution ; Waste Management/Waste Technology</subject><ispartof>Geotechnical and geological engineering, 2020-10, Vol.38 (5), p.4711-4733</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-e19a9be94fa9c4665c088b50a0fe979699f4c8833bd310cef4fd1c722bdff9c13</citedby><cites>FETCH-LOGICAL-a342t-e19a9be94fa9c4665c088b50a0fe979699f4c8833bd310cef4fd1c722bdff9c13</cites><orcidid>0000-0003-2109-0378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10706-020-01322-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10706-020-01322-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Moradshahi, Aria</creatorcontrib><creatorcontrib>Khosravi, Ali</creatorcontrib><creatorcontrib>McCartney, John S.</creatorcontrib><creatorcontrib>Bouazza, Abdelmalek</creatorcontrib><title>Axial Load Transfer Analyses of Energy Piles at a Rock Site</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>An axial load-transfer analysis for energy piles is presented in this study that incorporates empirical models for estimating the side shear resistance and end bearing capacity in rock along with associated normalized stress-displacement curves. The analysis was calibrated using results from field experiments involving monotonic heating of three 15.2 m-long energy piles in sandstone. Analyses of the field experiments indicates that poor cleanout of the excavations led to an end restraint smaller than that expected for a clean excavation in sandstone. Specifically, end bearing parameters representative of cohesionless sand were necessary to match the load-transfer analysis to the field experiment results. Parametric evaluations demonstrate the importance of using appropriate rock- or soil-specific empirical models when estimating the side shear resistance and end bearing capacity of energy piles. Specifically, the end bearing capacity and side shear resistance in rock are greater than in soils, leading to more restraint and greater thermal axial stresses. The stiffer side shear restraint in rock was also found to lead to a less nonlinear distribution in thermal axial stress along the length of the energy pile.</description><subject>Analysis</subject><subject>Axial loads</subject><subject>Axial stress</subject><subject>Bearing capacity</subject><subject>Civil Engineering</subject><subject>Constraints</subject><subject>Construction</subject><subject>Cooling</subject><subject>Dredging</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Empirical analysis</subject><subject>Energy</subject><subject>Estimation</subject><subject>Excavation</subject><subject>Experiments</subject><subject>Field tests</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Geothermal power</subject><subject>Heat exchangers</subject><subject>Hydrogeology</subject><subject>Load transfer</subject><subject>Original Paper</subject><subject>Piles</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Sedimentary rocks</subject><subject>Shear</subject><subject>Shear strength</subject><subject>Soil</subject><subject>Stress concentration</subject><subject>Terrestrial Pollution</subject><subject>Waste Management/Waste Technology</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAURYMoWEf_gKuA6-jLR5MGV2UYR2FA0XEd0jQZOtZ2TDrg_HurFdy5ely45_I4CF1SuKYA6iZRUCAJMCBAOWMkP0IZzRUnNGf6GGWgJRBOC3aKzlLaAgCTQDN0W342tsWr3tZ4HW2Xgo-47Gx7SD7hPuBF5-PmgJ-adsx2wBY_9-4NvzSDP0cnwbbJX_zeGXq9W6zn92T1uHyYlytiuWAD8VRbXXktgtVOSJk7KIoqBwvBa6Wl1kG4ouC8qjkF54MINXWKsaoOQTvKZ-hq2t3F_mPv02C2_T6OPybDBFdSCAV8bLGp5WKfUvTB7GLzbuPBUDDfkswkyYySzI8kk48Qn6A0lruNj3_T_1Bf_p1oDw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Moradshahi, Aria</creator><creator>Khosravi, Ali</creator><creator>McCartney, John S.</creator><creator>Bouazza, Abdelmalek</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2109-0378</orcidid></search><sort><creationdate>20201001</creationdate><title>Axial Load Transfer Analyses of Energy Piles at a Rock Site</title><author>Moradshahi, Aria ; Khosravi, Ali ; McCartney, John S. ; Bouazza, Abdelmalek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-e19a9be94fa9c4665c088b50a0fe979699f4c8833bd310cef4fd1c722bdff9c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Axial loads</topic><topic>Axial stress</topic><topic>Bearing capacity</topic><topic>Civil Engineering</topic><topic>Constraints</topic><topic>Construction</topic><topic>Cooling</topic><topic>Dredging</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Empirical analysis</topic><topic>Energy</topic><topic>Estimation</topic><topic>Excavation</topic><topic>Experiments</topic><topic>Field tests</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Geothermal power</topic><topic>Heat exchangers</topic><topic>Hydrogeology</topic><topic>Load transfer</topic><topic>Original Paper</topic><topic>Piles</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Sedimentary rocks</topic><topic>Shear</topic><topic>Shear strength</topic><topic>Soil</topic><topic>Stress concentration</topic><topic>Terrestrial Pollution</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moradshahi, Aria</creatorcontrib><creatorcontrib>Khosravi, Ali</creatorcontrib><creatorcontrib>McCartney, John S.</creatorcontrib><creatorcontrib>Bouazza, Abdelmalek</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moradshahi, Aria</au><au>Khosravi, Ali</au><au>McCartney, John S.</au><au>Bouazza, Abdelmalek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axial Load Transfer Analyses of Energy Piles at a Rock Site</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>38</volume><issue>5</issue><spage>4711</spage><epage>4733</epage><pages>4711-4733</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>An axial load-transfer analysis for energy piles is presented in this study that incorporates empirical models for estimating the side shear resistance and end bearing capacity in rock along with associated normalized stress-displacement curves. The analysis was calibrated using results from field experiments involving monotonic heating of three 15.2 m-long energy piles in sandstone. Analyses of the field experiments indicates that poor cleanout of the excavations led to an end restraint smaller than that expected for a clean excavation in sandstone. Specifically, end bearing parameters representative of cohesionless sand were necessary to match the load-transfer analysis to the field experiment results. Parametric evaluations demonstrate the importance of using appropriate rock- or soil-specific empirical models when estimating the side shear resistance and end bearing capacity of energy piles. Specifically, the end bearing capacity and side shear resistance in rock are greater than in soils, leading to more restraint and greater thermal axial stresses. The stiffer side shear restraint in rock was also found to lead to a less nonlinear distribution in thermal axial stress along the length of the energy pile.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10706-020-01322-5</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2109-0378</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2020-10, Vol.38 (5), p.4711-4733
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_journals_2437644703
source SpringerLink Journals
subjects Analysis
Axial loads
Axial stress
Bearing capacity
Civil Engineering
Constraints
Construction
Cooling
Dredging
Earth and Environmental Science
Earth Sciences
Empirical analysis
Energy
Estimation
Excavation
Experiments
Field tests
Geotechnical Engineering & Applied Earth Sciences
Geothermal power
Heat exchangers
Hydrogeology
Load transfer
Original Paper
Piles
Rocks
Sandstone
Sedimentary rocks
Shear
Shear strength
Soil
Stress concentration
Terrestrial Pollution
Waste Management/Waste Technology
title Axial Load Transfer Analyses of Energy Piles at a Rock Site
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axial%20Load%20Transfer%20Analyses%20of%20Energy%20Piles%20at%20a%20Rock%20Site&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Moradshahi,%20Aria&rft.date=2020-10-01&rft.volume=38&rft.issue=5&rft.spage=4711&rft.epage=4733&rft.pages=4711-4733&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-020-01322-5&rft_dat=%3Cproquest_cross%3E2437644703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437644703&rft_id=info:pmid/&rfr_iscdi=true