Upscaling the fabrication routine of bioreplicated rose petal light harvesting layers for photovoltaic modules

•Development of an upscaled routine for the replication of plant surface microtextures.•100 cm2 petal replicas laminated onto CIGS solar modules as light harvesting layers.•Excellent light in-coupling properties demonstrated at incidence angles above 50°.•Mean generated power increase of +5.4% measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2020-05, Vol.201, p.666-673
Hauptverfasser: Fritz, Benjamin, Hünig, Ruben, Guttmann, Markus, Schneider, Marc, Reza, K.M. Samaun, Salomon, Oliver, Jackson, Philip, Powalla, Michael, Lemmer, Uli, Gomard, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue
container_start_page 666
container_title Solar energy
container_volume 201
creator Fritz, Benjamin
Hünig, Ruben
Guttmann, Markus
Schneider, Marc
Reza, K.M. Samaun
Salomon, Oliver
Jackson, Philip
Powalla, Michael
Lemmer, Uli
Gomard, Guillaume
description •Development of an upscaled routine for the replication of plant surface microtextures.•100 cm2 petal replicas laminated onto CIGS solar modules as light harvesting layers.•Excellent light in-coupling properties demonstrated at incidence angles above 50°.•Mean generated power increase of +5.4% measured under outdoor conditions over 41 days. The hierarchical micro-/nanotextures adorning the petal surfaces of certain flower species exhibit outstanding sunlight harvesting properties, which can be exploited for photovoltaic (PV) applications via a direct replication approach into polymeric cover layers. This route has been so far hampered by the restricted size of the original bio-template and by the limited number of replication cycles when a polymeric mold is used. Here, we therefore introduce an upscaling strategy allowing the fabrication of mechanically stable, temperature resistant and large area nickel mold inserts which can be employed for hot embossing lithography, and ultimately for the mass production of bioreplicated films that improve light management in PV modules. As a proof-of-concept, we laminate the thus produced textured foils, here corresponding to rose petal replicas, onto glass encapsulated copper indium gallium diselenide (CIGS) solar modules with a surface of 100 cm2. We demonstrate an increase of the power output of 5.4% with respect to a device with an uncoated glass cover layer (measured in outdoor operating conditions). This improvement is notably attributed to the excellent light in-coupling properties of the replicated texture at high oblique incidence angles.
doi_str_mv 10.1016/j.solener.2020.03.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437434531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X20302504</els_id><sourcerecordid>2437434531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-4221084d3dba3aff65abb4ed19d0961f76bfcbb86df8f2669a61b2bdff15011f3</originalsourceid><addsrcrecordid>eNqFUMtqGzEUFaGBuEk-ISDoeqa60ry8CsW0aSHQTQPZCT2uYhllNJU0hvx9Zex9V2dxHveeQ8gDsBYYDF8PbY4BZ0wtZ5y1TLQVrsgGuhEa4P34iWwYE1PDtvz1hnzO-cAYjDCNGzK_LNmo4Oc3WvZIndLJG1V8nGmKa_Ez0uio9jHhEk4M2kpkpAsWFWjwb_tC9yodMZdTSFAfmDJ1MdFlH0s8xlCUN_Q92jVgviPXToWM9xe8JS8_vv_Z_Wyefz_92n17bowQY2k6zoFNnRVWK6GcG3qldYcWtpZtB3DjoJ3Rehqsmxwfhq0aQHNtnYOeAThxS76cc5cU_671N3mIa5rrSck7MXai6wVUVX9WmVopJ3RySf5dpQ8JTJ6mlQd5mVaeppVMyArV93j2Ya1w9JXNxuNs0PqEpkgb_X8S_gGGQYhd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437434531</pqid></control><display><type>article</type><title>Upscaling the fabrication routine of bioreplicated rose petal light harvesting layers for photovoltaic modules</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fritz, Benjamin ; Hünig, Ruben ; Guttmann, Markus ; Schneider, Marc ; Reza, K.M. Samaun ; Salomon, Oliver ; Jackson, Philip ; Powalla, Michael ; Lemmer, Uli ; Gomard, Guillaume</creator><creatorcontrib>Fritz, Benjamin ; Hünig, Ruben ; Guttmann, Markus ; Schneider, Marc ; Reza, K.M. Samaun ; Salomon, Oliver ; Jackson, Philip ; Powalla, Michael ; Lemmer, Uli ; Gomard, Guillaume</creatorcontrib><description>•Development of an upscaled routine for the replication of plant surface microtextures.•100 cm2 petal replicas laminated onto CIGS solar modules as light harvesting layers.•Excellent light in-coupling properties demonstrated at incidence angles above 50°.•Mean generated power increase of +5.4% measured under outdoor conditions over 41 days. The hierarchical micro-/nanotextures adorning the petal surfaces of certain flower species exhibit outstanding sunlight harvesting properties, which can be exploited for photovoltaic (PV) applications via a direct replication approach into polymeric cover layers. This route has been so far hampered by the restricted size of the original bio-template and by the limited number of replication cycles when a polymeric mold is used. Here, we therefore introduce an upscaling strategy allowing the fabrication of mechanically stable, temperature resistant and large area nickel mold inserts which can be employed for hot embossing lithography, and ultimately for the mass production of bioreplicated films that improve light management in PV modules. As a proof-of-concept, we laminate the thus produced textured foils, here corresponding to rose petal replicas, onto glass encapsulated copper indium gallium diselenide (CIGS) solar modules with a surface of 100 cm2. We demonstrate an increase of the power output of 5.4% with respect to a device with an uncoated glass cover layer (measured in outdoor operating conditions). This improvement is notably attributed to the excellent light in-coupling properties of the replicated texture at high oblique incidence angles.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2020.03.020</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Bioreplication ; Copper indium gallium selenides ; Embossing ; Fabrication ; Foils ; Gallium ; Glass ; Hierarchical texture ; Hot embossing ; Incidence angle ; Inserts ; Laminates ; Light harvesting coating ; Mass production ; Modules ; Molds ; Nickel ; Petal epidermal cells ; Photovoltaic cells ; Photovoltaics ; Polymeric antireflective layer ; Replication ; Solar energy</subject><ispartof>Solar energy, 2020-05, Vol.201, p.666-673</ispartof><rights>2020</rights><rights>Copyright Pergamon Press Inc. May 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-4221084d3dba3aff65abb4ed19d0961f76bfcbb86df8f2669a61b2bdff15011f3</citedby><cites>FETCH-LOGICAL-c337t-4221084d3dba3aff65abb4ed19d0961f76bfcbb86df8f2669a61b2bdff15011f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2020.03.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Fritz, Benjamin</creatorcontrib><creatorcontrib>Hünig, Ruben</creatorcontrib><creatorcontrib>Guttmann, Markus</creatorcontrib><creatorcontrib>Schneider, Marc</creatorcontrib><creatorcontrib>Reza, K.M. Samaun</creatorcontrib><creatorcontrib>Salomon, Oliver</creatorcontrib><creatorcontrib>Jackson, Philip</creatorcontrib><creatorcontrib>Powalla, Michael</creatorcontrib><creatorcontrib>Lemmer, Uli</creatorcontrib><creatorcontrib>Gomard, Guillaume</creatorcontrib><title>Upscaling the fabrication routine of bioreplicated rose petal light harvesting layers for photovoltaic modules</title><title>Solar energy</title><description>•Development of an upscaled routine for the replication of plant surface microtextures.•100 cm2 petal replicas laminated onto CIGS solar modules as light harvesting layers.•Excellent light in-coupling properties demonstrated at incidence angles above 50°.•Mean generated power increase of +5.4% measured under outdoor conditions over 41 days. The hierarchical micro-/nanotextures adorning the petal surfaces of certain flower species exhibit outstanding sunlight harvesting properties, which can be exploited for photovoltaic (PV) applications via a direct replication approach into polymeric cover layers. This route has been so far hampered by the restricted size of the original bio-template and by the limited number of replication cycles when a polymeric mold is used. Here, we therefore introduce an upscaling strategy allowing the fabrication of mechanically stable, temperature resistant and large area nickel mold inserts which can be employed for hot embossing lithography, and ultimately for the mass production of bioreplicated films that improve light management in PV modules. As a proof-of-concept, we laminate the thus produced textured foils, here corresponding to rose petal replicas, onto glass encapsulated copper indium gallium diselenide (CIGS) solar modules with a surface of 100 cm2. We demonstrate an increase of the power output of 5.4% with respect to a device with an uncoated glass cover layer (measured in outdoor operating conditions). This improvement is notably attributed to the excellent light in-coupling properties of the replicated texture at high oblique incidence angles.</description><subject>Bioreplication</subject><subject>Copper indium gallium selenides</subject><subject>Embossing</subject><subject>Fabrication</subject><subject>Foils</subject><subject>Gallium</subject><subject>Glass</subject><subject>Hierarchical texture</subject><subject>Hot embossing</subject><subject>Incidence angle</subject><subject>Inserts</subject><subject>Laminates</subject><subject>Light harvesting coating</subject><subject>Mass production</subject><subject>Modules</subject><subject>Molds</subject><subject>Nickel</subject><subject>Petal epidermal cells</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Polymeric antireflective layer</subject><subject>Replication</subject><subject>Solar energy</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtqGzEUFaGBuEk-ISDoeqa60ry8CsW0aSHQTQPZCT2uYhllNJU0hvx9Zex9V2dxHveeQ8gDsBYYDF8PbY4BZ0wtZ5y1TLQVrsgGuhEa4P34iWwYE1PDtvz1hnzO-cAYjDCNGzK_LNmo4Oc3WvZIndLJG1V8nGmKa_Ez0uio9jHhEk4M2kpkpAsWFWjwb_tC9yodMZdTSFAfmDJ1MdFlH0s8xlCUN_Q92jVgviPXToWM9xe8JS8_vv_Z_Wyefz_92n17bowQY2k6zoFNnRVWK6GcG3qldYcWtpZtB3DjoJ3Rehqsmxwfhq0aQHNtnYOeAThxS76cc5cU_671N3mIa5rrSck7MXai6wVUVX9WmVopJ3RySf5dpQ8JTJ6mlQd5mVaeppVMyArV93j2Ya1w9JXNxuNs0PqEpkgb_X8S_gGGQYhd</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Fritz, Benjamin</creator><creator>Hünig, Ruben</creator><creator>Guttmann, Markus</creator><creator>Schneider, Marc</creator><creator>Reza, K.M. Samaun</creator><creator>Salomon, Oliver</creator><creator>Jackson, Philip</creator><creator>Powalla, Michael</creator><creator>Lemmer, Uli</creator><creator>Gomard, Guillaume</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200501</creationdate><title>Upscaling the fabrication routine of bioreplicated rose petal light harvesting layers for photovoltaic modules</title><author>Fritz, Benjamin ; Hünig, Ruben ; Guttmann, Markus ; Schneider, Marc ; Reza, K.M. Samaun ; Salomon, Oliver ; Jackson, Philip ; Powalla, Michael ; Lemmer, Uli ; Gomard, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-4221084d3dba3aff65abb4ed19d0961f76bfcbb86df8f2669a61b2bdff15011f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioreplication</topic><topic>Copper indium gallium selenides</topic><topic>Embossing</topic><topic>Fabrication</topic><topic>Foils</topic><topic>Gallium</topic><topic>Glass</topic><topic>Hierarchical texture</topic><topic>Hot embossing</topic><topic>Incidence angle</topic><topic>Inserts</topic><topic>Laminates</topic><topic>Light harvesting coating</topic><topic>Mass production</topic><topic>Modules</topic><topic>Molds</topic><topic>Nickel</topic><topic>Petal epidermal cells</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Polymeric antireflective layer</topic><topic>Replication</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fritz, Benjamin</creatorcontrib><creatorcontrib>Hünig, Ruben</creatorcontrib><creatorcontrib>Guttmann, Markus</creatorcontrib><creatorcontrib>Schneider, Marc</creatorcontrib><creatorcontrib>Reza, K.M. Samaun</creatorcontrib><creatorcontrib>Salomon, Oliver</creatorcontrib><creatorcontrib>Jackson, Philip</creatorcontrib><creatorcontrib>Powalla, Michael</creatorcontrib><creatorcontrib>Lemmer, Uli</creatorcontrib><creatorcontrib>Gomard, Guillaume</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritz, Benjamin</au><au>Hünig, Ruben</au><au>Guttmann, Markus</au><au>Schneider, Marc</au><au>Reza, K.M. Samaun</au><au>Salomon, Oliver</au><au>Jackson, Philip</au><au>Powalla, Michael</au><au>Lemmer, Uli</au><au>Gomard, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upscaling the fabrication routine of bioreplicated rose petal light harvesting layers for photovoltaic modules</atitle><jtitle>Solar energy</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>201</volume><spage>666</spage><epage>673</epage><pages>666-673</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•Development of an upscaled routine for the replication of plant surface microtextures.•100 cm2 petal replicas laminated onto CIGS solar modules as light harvesting layers.•Excellent light in-coupling properties demonstrated at incidence angles above 50°.•Mean generated power increase of +5.4% measured under outdoor conditions over 41 days. The hierarchical micro-/nanotextures adorning the petal surfaces of certain flower species exhibit outstanding sunlight harvesting properties, which can be exploited for photovoltaic (PV) applications via a direct replication approach into polymeric cover layers. This route has been so far hampered by the restricted size of the original bio-template and by the limited number of replication cycles when a polymeric mold is used. Here, we therefore introduce an upscaling strategy allowing the fabrication of mechanically stable, temperature resistant and large area nickel mold inserts which can be employed for hot embossing lithography, and ultimately for the mass production of bioreplicated films that improve light management in PV modules. As a proof-of-concept, we laminate the thus produced textured foils, here corresponding to rose petal replicas, onto glass encapsulated copper indium gallium diselenide (CIGS) solar modules with a surface of 100 cm2. We demonstrate an increase of the power output of 5.4% with respect to a device with an uncoated glass cover layer (measured in outdoor operating conditions). This improvement is notably attributed to the excellent light in-coupling properties of the replicated texture at high oblique incidence angles.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2020.03.020</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2020-05, Vol.201, p.666-673
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2437434531
source Access via ScienceDirect (Elsevier)
subjects Bioreplication
Copper indium gallium selenides
Embossing
Fabrication
Foils
Gallium
Glass
Hierarchical texture
Hot embossing
Incidence angle
Inserts
Laminates
Light harvesting coating
Mass production
Modules
Molds
Nickel
Petal epidermal cells
Photovoltaic cells
Photovoltaics
Polymeric antireflective layer
Replication
Solar energy
title Upscaling the fabrication routine of bioreplicated rose petal light harvesting layers for photovoltaic modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upscaling%20the%20fabrication%20routine%20of%20bioreplicated%20rose%20petal%20light%20harvesting%20layers%20for%20photovoltaic%20modules&rft.jtitle=Solar%20energy&rft.au=Fritz,%20Benjamin&rft.date=2020-05-01&rft.volume=201&rft.spage=666&rft.epage=673&rft.pages=666-673&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2020.03.020&rft_dat=%3Cproquest_cross%3E2437434531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437434531&rft_id=info:pmid/&rft_els_id=S0038092X20302504&rfr_iscdi=true