Where Is the Io Plasma Torus? A Comparison of Observations by Juno Radio Occultations to Predictions From Jovian Magnetic Field Models

The Io plasma torus is thought to lie in Jupiter's centrifugal equator, a location that depends on Jupiter's rotation and magnetic field. Yet previous observations and predictions of the location of the Io plasma torus are inconsistent. Here we test the hypothesis that the Io plasma torus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2020-08, Vol.125 (8), p.n/a
Hauptverfasser: Phipps, Phillip H., Withers, Paul, Vogt, Marissa F., Buccino, Dustin R., Yang, Yu‐Ming, Parisi, Marzia, Ranquist, Drake, Kollmann, Peter, Bolton, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 125
creator Phipps, Phillip H.
Withers, Paul
Vogt, Marissa F.
Buccino, Dustin R.
Yang, Yu‐Ming
Parisi, Marzia
Ranquist, Drake
Kollmann, Peter
Bolton, Scott
description The Io plasma torus is thought to lie in Jupiter's centrifugal equator, a location that depends on Jupiter's rotation and magnetic field. Yet previous observations and predictions of the location of the Io plasma torus are inconsistent. Here we test the hypothesis that the Io plasma torus lies in the centrifugal equator by comparison of observations by Juno radio occultations to predictions derived from Juno‐era magnetic field models. These observations determine the locations of two torus components: The cold torus is centered near 5.3 Jovian radii (RJ), and the “torus beyond 5.5 RJ,” dominated by the warm torus, is centered near 5.9 RJ. The observations deviate by 1–2° from the planar centrifugal equator expected for a Voyager epoch dipolar magnetic field. In each observation, the locations of distinct torus regions differ by as much as 1° indicating significant radial structure. The root‐mean‐square error between observation and prediction is smaller for predictions from the JRM09 magnetic field model than for predictions from the VIP4 magnetic field model, confirming the JRM09 model is an improvement over the VIP4 model. Agreement between observations and predictions improves for the warm torus if the magnetic field contributions of a nominal magnetospheric current sheet model are included but worsens for the cold torus. Magnetic field conditions around 5.3 RJ are adequately represented by an internal field model without the current sheet. Conditions around 5.9 RJ require internal and external contributions. These results place constraints on properties of the magnetospheric current sheet during the Juno epoch. Key Points The JRM09 magnetic field model performs better at matching the radio occultation data than the VIP4 magnetic field model The magnetic field induced by magnetospheric currents affects the Io plasma torus location The Io plasma torus location may constrain properties of the magnetospheric current sheet
doi_str_mv 10.1029/2019JA027633
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437377557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437377557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3079-50185996d9475d61338843f737d73113763f2955214687c996b5c2fa97262ac3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOObu_AEBb63mo2maKxnDzZWNyRh4WbI0dRltM5N2sj_g7zbSCV55bt7z8fAezgHgFqMHjIh4JAiLbIwITyi9AAOCExGJGJHL35ym6BqMvN-jEGloYTYAX2877TSce9juglj4WklfS7ixrvNPcAwntj5IZ7xtoC3hauu1O8rW2MbD7QlmXWPhWhbGwpVSXdWeR20wcrowqi-nztYws0cjG7iU741ujYJTo6sCLm2hK38DrkpZeT066xBsps-byUu0WM3mk_EiUhRxETGEUyZEUoiYsyLBlKZpTEtOecEpxjTcXhLBGMFxknIVyC1TpJSCk4RIRYfgrrc9OPvRad_me9u5JmzMSUyDDWeMB-q-p5Sz3jtd5gdnaulOOUb5z6_zv78OOO3xT1Pp079sns3WY8ZSKug3PMd9oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437377557</pqid></control><display><type>article</type><title>Where Is the Io Plasma Torus? A Comparison of Observations by Juno Radio Occultations to Predictions From Jovian Magnetic Field Models</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Phipps, Phillip H. ; Withers, Paul ; Vogt, Marissa F. ; Buccino, Dustin R. ; Yang, Yu‐Ming ; Parisi, Marzia ; Ranquist, Drake ; Kollmann, Peter ; Bolton, Scott</creator><creatorcontrib>Phipps, Phillip H. ; Withers, Paul ; Vogt, Marissa F. ; Buccino, Dustin R. ; Yang, Yu‐Ming ; Parisi, Marzia ; Ranquist, Drake ; Kollmann, Peter ; Bolton, Scott</creatorcontrib><description>The Io plasma torus is thought to lie in Jupiter's centrifugal equator, a location that depends on Jupiter's rotation and magnetic field. Yet previous observations and predictions of the location of the Io plasma torus are inconsistent. Here we test the hypothesis that the Io plasma torus lies in the centrifugal equator by comparison of observations by Juno radio occultations to predictions derived from Juno‐era magnetic field models. These observations determine the locations of two torus components: The cold torus is centered near 5.3 Jovian radii (RJ), and the “torus beyond 5.5 RJ,” dominated by the warm torus, is centered near 5.9 RJ. The observations deviate by 1–2° from the planar centrifugal equator expected for a Voyager epoch dipolar magnetic field. In each observation, the locations of distinct torus regions differ by as much as 1° indicating significant radial structure. The root‐mean‐square error between observation and prediction is smaller for predictions from the JRM09 magnetic field model than for predictions from the VIP4 magnetic field model, confirming the JRM09 model is an improvement over the VIP4 model. Agreement between observations and predictions improves for the warm torus if the magnetic field contributions of a nominal magnetospheric current sheet model are included but worsens for the cold torus. Magnetic field conditions around 5.3 RJ are adequately represented by an internal field model without the current sheet. Conditions around 5.9 RJ require internal and external contributions. These results place constraints on properties of the magnetospheric current sheet during the Juno epoch. Key Points The JRM09 magnetic field model performs better at matching the radio occultation data than the VIP4 magnetic field model The magnetic field induced by magnetospheric currents affects the Io plasma torus location The Io plasma torus location may constrain properties of the magnetospheric current sheet</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2019JA027633</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>centrifugal equator ; current sheet ; Current sheets ; Io plasma torus ; Jupiter ; Jupiter magnetosphere ; Jupiter probes ; Magnetic fields ; Magnetic properties ; Magnetospheres ; Magnetospheric current sheet ; Planetary magnetic fields ; Plasma ; Sheet modelling ; Toruses</subject><ispartof>Journal of geophysical research. Space physics, 2020-08, Vol.125 (8), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3079-50185996d9475d61338843f737d73113763f2955214687c996b5c2fa97262ac3</citedby><cites>FETCH-LOGICAL-c3079-50185996d9475d61338843f737d73113763f2955214687c996b5c2fa97262ac3</cites><orcidid>0000-0003-4064-6634 ; 0000-0002-7053-6893 ; 0000-0003-4885-8615 ; 0000-0001-6645-5778 ; 0000-0003-3084-4581 ; 0000-0002-2888-5918 ; 0000-0002-4274-9760 ; 0000-0002-4323-4400 ; 0000-0002-9115-0789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019JA027633$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019JA027633$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Phipps, Phillip H.</creatorcontrib><creatorcontrib>Withers, Paul</creatorcontrib><creatorcontrib>Vogt, Marissa F.</creatorcontrib><creatorcontrib>Buccino, Dustin R.</creatorcontrib><creatorcontrib>Yang, Yu‐Ming</creatorcontrib><creatorcontrib>Parisi, Marzia</creatorcontrib><creatorcontrib>Ranquist, Drake</creatorcontrib><creatorcontrib>Kollmann, Peter</creatorcontrib><creatorcontrib>Bolton, Scott</creatorcontrib><title>Where Is the Io Plasma Torus? A Comparison of Observations by Juno Radio Occultations to Predictions From Jovian Magnetic Field Models</title><title>Journal of geophysical research. Space physics</title><description>The Io plasma torus is thought to lie in Jupiter's centrifugal equator, a location that depends on Jupiter's rotation and magnetic field. Yet previous observations and predictions of the location of the Io plasma torus are inconsistent. Here we test the hypothesis that the Io plasma torus lies in the centrifugal equator by comparison of observations by Juno radio occultations to predictions derived from Juno‐era magnetic field models. These observations determine the locations of two torus components: The cold torus is centered near 5.3 Jovian radii (RJ), and the “torus beyond 5.5 RJ,” dominated by the warm torus, is centered near 5.9 RJ. The observations deviate by 1–2° from the planar centrifugal equator expected for a Voyager epoch dipolar magnetic field. In each observation, the locations of distinct torus regions differ by as much as 1° indicating significant radial structure. The root‐mean‐square error between observation and prediction is smaller for predictions from the JRM09 magnetic field model than for predictions from the VIP4 magnetic field model, confirming the JRM09 model is an improvement over the VIP4 model. Agreement between observations and predictions improves for the warm torus if the magnetic field contributions of a nominal magnetospheric current sheet model are included but worsens for the cold torus. Magnetic field conditions around 5.3 RJ are adequately represented by an internal field model without the current sheet. Conditions around 5.9 RJ require internal and external contributions. These results place constraints on properties of the magnetospheric current sheet during the Juno epoch. Key Points The JRM09 magnetic field model performs better at matching the radio occultation data than the VIP4 magnetic field model The magnetic field induced by magnetospheric currents affects the Io plasma torus location The Io plasma torus location may constrain properties of the magnetospheric current sheet</description><subject>centrifugal equator</subject><subject>current sheet</subject><subject>Current sheets</subject><subject>Io plasma torus</subject><subject>Jupiter</subject><subject>Jupiter magnetosphere</subject><subject>Jupiter probes</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetospheres</subject><subject>Magnetospheric current sheet</subject><subject>Planetary magnetic fields</subject><subject>Plasma</subject><subject>Sheet modelling</subject><subject>Toruses</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOObu_AEBb63mo2maKxnDzZWNyRh4WbI0dRltM5N2sj_g7zbSCV55bt7z8fAezgHgFqMHjIh4JAiLbIwITyi9AAOCExGJGJHL35ym6BqMvN-jEGloYTYAX2877TSce9juglj4WklfS7ixrvNPcAwntj5IZ7xtoC3hauu1O8rW2MbD7QlmXWPhWhbGwpVSXdWeR20wcrowqi-nztYws0cjG7iU741ujYJTo6sCLm2hK38DrkpZeT066xBsps-byUu0WM3mk_EiUhRxETGEUyZEUoiYsyLBlKZpTEtOecEpxjTcXhLBGMFxknIVyC1TpJSCk4RIRYfgrrc9OPvRad_me9u5JmzMSUyDDWeMB-q-p5Sz3jtd5gdnaulOOUb5z6_zv78OOO3xT1Pp079sns3WY8ZSKug3PMd9oA</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Phipps, Phillip H.</creator><creator>Withers, Paul</creator><creator>Vogt, Marissa F.</creator><creator>Buccino, Dustin R.</creator><creator>Yang, Yu‐Ming</creator><creator>Parisi, Marzia</creator><creator>Ranquist, Drake</creator><creator>Kollmann, Peter</creator><creator>Bolton, Scott</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4064-6634</orcidid><orcidid>https://orcid.org/0000-0002-7053-6893</orcidid><orcidid>https://orcid.org/0000-0003-4885-8615</orcidid><orcidid>https://orcid.org/0000-0001-6645-5778</orcidid><orcidid>https://orcid.org/0000-0003-3084-4581</orcidid><orcidid>https://orcid.org/0000-0002-2888-5918</orcidid><orcidid>https://orcid.org/0000-0002-4274-9760</orcidid><orcidid>https://orcid.org/0000-0002-4323-4400</orcidid><orcidid>https://orcid.org/0000-0002-9115-0789</orcidid></search><sort><creationdate>202008</creationdate><title>Where Is the Io Plasma Torus? A Comparison of Observations by Juno Radio Occultations to Predictions From Jovian Magnetic Field Models</title><author>Phipps, Phillip H. ; Withers, Paul ; Vogt, Marissa F. ; Buccino, Dustin R. ; Yang, Yu‐Ming ; Parisi, Marzia ; Ranquist, Drake ; Kollmann, Peter ; Bolton, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3079-50185996d9475d61338843f737d73113763f2955214687c996b5c2fa97262ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>centrifugal equator</topic><topic>current sheet</topic><topic>Current sheets</topic><topic>Io plasma torus</topic><topic>Jupiter</topic><topic>Jupiter magnetosphere</topic><topic>Jupiter probes</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetospheres</topic><topic>Magnetospheric current sheet</topic><topic>Planetary magnetic fields</topic><topic>Plasma</topic><topic>Sheet modelling</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phipps, Phillip H.</creatorcontrib><creatorcontrib>Withers, Paul</creatorcontrib><creatorcontrib>Vogt, Marissa F.</creatorcontrib><creatorcontrib>Buccino, Dustin R.</creatorcontrib><creatorcontrib>Yang, Yu‐Ming</creatorcontrib><creatorcontrib>Parisi, Marzia</creatorcontrib><creatorcontrib>Ranquist, Drake</creatorcontrib><creatorcontrib>Kollmann, Peter</creatorcontrib><creatorcontrib>Bolton, Scott</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phipps, Phillip H.</au><au>Withers, Paul</au><au>Vogt, Marissa F.</au><au>Buccino, Dustin R.</au><au>Yang, Yu‐Ming</au><au>Parisi, Marzia</au><au>Ranquist, Drake</au><au>Kollmann, Peter</au><au>Bolton, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Where Is the Io Plasma Torus? A Comparison of Observations by Juno Radio Occultations to Predictions From Jovian Magnetic Field Models</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2020-08</date><risdate>2020</risdate><volume>125</volume><issue>8</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>The Io plasma torus is thought to lie in Jupiter's centrifugal equator, a location that depends on Jupiter's rotation and magnetic field. Yet previous observations and predictions of the location of the Io plasma torus are inconsistent. Here we test the hypothesis that the Io plasma torus lies in the centrifugal equator by comparison of observations by Juno radio occultations to predictions derived from Juno‐era magnetic field models. These observations determine the locations of two torus components: The cold torus is centered near 5.3 Jovian radii (RJ), and the “torus beyond 5.5 RJ,” dominated by the warm torus, is centered near 5.9 RJ. The observations deviate by 1–2° from the planar centrifugal equator expected for a Voyager epoch dipolar magnetic field. In each observation, the locations of distinct torus regions differ by as much as 1° indicating significant radial structure. The root‐mean‐square error between observation and prediction is smaller for predictions from the JRM09 magnetic field model than for predictions from the VIP4 magnetic field model, confirming the JRM09 model is an improvement over the VIP4 model. Agreement between observations and predictions improves for the warm torus if the magnetic field contributions of a nominal magnetospheric current sheet model are included but worsens for the cold torus. Magnetic field conditions around 5.3 RJ are adequately represented by an internal field model without the current sheet. Conditions around 5.9 RJ require internal and external contributions. These results place constraints on properties of the magnetospheric current sheet during the Juno epoch. Key Points The JRM09 magnetic field model performs better at matching the radio occultation data than the VIP4 magnetic field model The magnetic field induced by magnetospheric currents affects the Io plasma torus location The Io plasma torus location may constrain properties of the magnetospheric current sheet</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019JA027633</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4064-6634</orcidid><orcidid>https://orcid.org/0000-0002-7053-6893</orcidid><orcidid>https://orcid.org/0000-0003-4885-8615</orcidid><orcidid>https://orcid.org/0000-0001-6645-5778</orcidid><orcidid>https://orcid.org/0000-0003-3084-4581</orcidid><orcidid>https://orcid.org/0000-0002-2888-5918</orcidid><orcidid>https://orcid.org/0000-0002-4274-9760</orcidid><orcidid>https://orcid.org/0000-0002-4323-4400</orcidid><orcidid>https://orcid.org/0000-0002-9115-0789</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2020-08, Vol.125 (8), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2437377557
source Wiley Online Library - AutoHoldings Journals; Wiley Online Library (Open Access Collection)
subjects centrifugal equator
current sheet
Current sheets
Io plasma torus
Jupiter
Jupiter magnetosphere
Jupiter probes
Magnetic fields
Magnetic properties
Magnetospheres
Magnetospheric current sheet
Planetary magnetic fields
Plasma
Sheet modelling
Toruses
title Where Is the Io Plasma Torus? A Comparison of Observations by Juno Radio Occultations to Predictions From Jovian Magnetic Field Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Where%20Is%20the%20Io%20Plasma%20Torus?%20A%20Comparison%20of%20Observations%20by%20Juno%20Radio%20Occultations%20to%20Predictions%20From%20Jovian%20Magnetic%20Field%20Models&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Phipps,%20Phillip%20H.&rft.date=2020-08&rft.volume=125&rft.issue=8&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2019JA027633&rft_dat=%3Cproquest_cross%3E2437377557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437377557&rft_id=info:pmid/&rfr_iscdi=true