Origin and tectonic significance of the metavolcanic rocks and mafic enclaves from the Palaeoproterozoic Birimian Terrane, SE West African Craton, Ghana

The Palaeoproterozoic Birimian Supergroup of the West African Craton (WAC) consists of volcanic belts composed predominantly of basaltic and andesitic rocks and intervening sedimentary basins composed predominantly of wackes and argillites. Mafic metavolcanic rocks and granitoid-hosted enclaves from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological magazine 2020-08, Vol.157 (8), p.1349-1366
Hauptverfasser: Sakyi, Patrick Asamoah, Su, Ben-Xun, Manu, Johnson, Kwayisi, Daniel, Anani, Chris Y., Alemayehu, Melesse, Malaviarachchi, Sanjeewa P.K., Nude, Prosper M., Su, Ben-Can
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1366
container_issue 8
container_start_page 1349
container_title Geological magazine
container_volume 157
creator Sakyi, Patrick Asamoah
Su, Ben-Xun
Manu, Johnson
Kwayisi, Daniel
Anani, Chris Y.
Alemayehu, Melesse
Malaviarachchi, Sanjeewa P.K.
Nude, Prosper M.
Su, Ben-Can
description The Palaeoproterozoic Birimian Supergroup of the West African Craton (WAC) consists of volcanic belts composed predominantly of basaltic and andesitic rocks and intervening sedimentary basins composed predominantly of wackes and argillites. Mafic metavolcanic rocks and granitoid-hosted enclaves from the Palaeoproterozoic Lawra Belt of Ghana were analysed for geochemical and Sr–Nd isotopic data to constrain the geological evolution of the southeastern part of the WAC. The metavolcanic rocks display mainly tholeiitic signatures, whereas the enclaves show calc-alkaline signatures. The high SiO2 contents (48.6–68.9 wt%) of the enclaves are suggestive of their evolved character. The high Th/Yb values of the samples relative to that of the mantle array may indicate derivation of their respective magmas from subduction-modified source(s). The rocks show positive εNd values of +0.79 to +2.86 (metavolcanic rocks) and +0.79 to +1.82 (enclaves). These signatures and their Nd model ages (TDM2) of 2.31–2.47 Ga (metavolcanic rocks) and 2.39–2.47 Ga (enclaves) suggest they were probably derived from juvenile mantle-derived protoliths, with possible input of subducted pre-Birimian (Archean?) rocks in their source(s). Their positive Ba–Th and negative Nb–Ta, Zr–Hf and Ti anomalies may indicate their formation through subduction-related magmatism consistent with an arc setting. We propose that the metavolcanic rocks and enclaves from the Lawra Belt formed in a similar island-arc setting. We infer that the granitoids developed through variable degrees of mixing/mingling between basic magma and granitic melt during subduction, when blobs of basic to intermediate parental magma became trapped in the granitic magma to form the enclaves.
doi_str_mv 10.1017/S001675681900150X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437327200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S001675681900150X</cupid><sourcerecordid>2437327200</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-3e7cde08b05f16d65892f35eb3cf722b7869f2a8a7880d46e522e3fee50a83c73</originalsourceid><addsrcrecordid>eNp1kVtLHDEUgINYcNX-gL4FfKzT5rK5zKNd1BYEBZX2bTibOVljZxKbjIr9Jf25zbqCheJTLuc75zvJIeQDZ5844-bzJWNcG6Utb-tOsR9bZMbnum0Us3ybzNbhZh3fIbul3NajZNbOyJ_zHFYhUog9ndBNKQZHS1jF4IOD6JAmT6cbpCNO8JCGeleBnNzP8pwzQuUoRjfAAxbqcxqf8QsYANNdThPm9DtV5kvIYQwQ6RXmDBEP6eUx_Y5lokc-r110kaH6D-npDUTYJ-88DAXfv6x75Prk-GrxtTk7P_22ODprQBo9NRKN65HZJVOe614r2wovFS6l80aIpbG69QIsGGtZP9eohEDpERUDK52Re-RgU7f2-uu-ttPdpvscq7ITc2mkMIKxSvEN5XIqJaPv7uprID91nHXrAXT_DaDmfNzkrDAVF-of4WPKQ_-PgAnWMdMq3VZavhhgXObQr_CVe9vxF6QsmGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437327200</pqid></control><display><type>article</type><title>Origin and tectonic significance of the metavolcanic rocks and mafic enclaves from the Palaeoproterozoic Birimian Terrane, SE West African Craton, Ghana</title><source>Cambridge Journals</source><creator>Sakyi, Patrick Asamoah ; Su, Ben-Xun ; Manu, Johnson ; Kwayisi, Daniel ; Anani, Chris Y. ; Alemayehu, Melesse ; Malaviarachchi, Sanjeewa P.K. ; Nude, Prosper M. ; Su, Ben-Can</creator><creatorcontrib>Sakyi, Patrick Asamoah ; Su, Ben-Xun ; Manu, Johnson ; Kwayisi, Daniel ; Anani, Chris Y. ; Alemayehu, Melesse ; Malaviarachchi, Sanjeewa P.K. ; Nude, Prosper M. ; Su, Ben-Can</creatorcontrib><description>The Palaeoproterozoic Birimian Supergroup of the West African Craton (WAC) consists of volcanic belts composed predominantly of basaltic and andesitic rocks and intervening sedimentary basins composed predominantly of wackes and argillites. Mafic metavolcanic rocks and granitoid-hosted enclaves from the Palaeoproterozoic Lawra Belt of Ghana were analysed for geochemical and Sr–Nd isotopic data to constrain the geological evolution of the southeastern part of the WAC. The metavolcanic rocks display mainly tholeiitic signatures, whereas the enclaves show calc-alkaline signatures. The high SiO2 contents (48.6–68.9 wt%) of the enclaves are suggestive of their evolved character. The high Th/Yb values of the samples relative to that of the mantle array may indicate derivation of their respective magmas from subduction-modified source(s). The rocks show positive εNd values of +0.79 to +2.86 (metavolcanic rocks) and +0.79 to +1.82 (enclaves). These signatures and their Nd model ages (TDM2) of 2.31–2.47 Ga (metavolcanic rocks) and 2.39–2.47 Ga (enclaves) suggest they were probably derived from juvenile mantle-derived protoliths, with possible input of subducted pre-Birimian (Archean?) rocks in their source(s). Their positive Ba–Th and negative Nb–Ta, Zr–Hf and Ti anomalies may indicate their formation through subduction-related magmatism consistent with an arc setting. We propose that the metavolcanic rocks and enclaves from the Lawra Belt formed in a similar island-arc setting. We infer that the granitoids developed through variable degrees of mixing/mingling between basic magma and granitic melt during subduction, when blobs of basic to intermediate parental magma became trapped in the granitic magma to form the enclaves.</description><identifier>ISSN: 0016-7568</identifier><identifier>EISSN: 1469-5081</identifier><identifier>DOI: 10.1017/S001675681900150X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Africa ; alkaline earth metals ; andesitic composition ; Anomalies ; basaltic composition ; Belts ; Birimian ; Birimian Terrane ; calc-alkalic composition ; Cratons ; Evolution ; geochemical anomalies ; Geochemistry ; Geological time ; Geology ; Ghana ; granites ; ICP mass spectra ; igneous and metamorphic rocks ; Igneous rocks ; Island arcs ; isotopes ; Lava ; Lawra Belt ; mafic composition ; mafic enclaves ; Magma ; magmas ; major elements ; mantle ; mass spectra ; metals ; metamorphic rocks ; metavolcanic rocks ; mixing ; neodymium ; Niobium ; Original Article ; Paleoproterozoic ; Petrogenesis ; Petrology ; Plate tectonics ; plutonic rocks ; Precambrian ; Proterozoic ; protoliths ; rare earths ; Rock ; rock, sediment, soil ; Rocks ; Sedimentary basins ; Signatures ; Silica ; Silicon dioxide ; spectra ; strontium ; Subduction ; Subduction (geology) ; Tantalum ; Tectonics ; tholeiitic composition ; trace elements ; upper Precambrian ; Volcanic belts ; West Africa ; West African Craton ; X-ray fluorescence spectra ; Zirconium</subject><ispartof>Geological magazine, 2020-08, Vol.157 (8), p.1349-1366</ispartof><rights>Cambridge University Press 2020</rights><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-3e7cde08b05f16d65892f35eb3cf722b7869f2a8a7880d46e522e3fee50a83c73</citedby><cites>FETCH-LOGICAL-a376t-3e7cde08b05f16d65892f35eb3cf722b7869f2a8a7880d46e522e3fee50a83c73</cites><orcidid>0000-0002-7536-6264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S001675681900150X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Sakyi, Patrick Asamoah</creatorcontrib><creatorcontrib>Su, Ben-Xun</creatorcontrib><creatorcontrib>Manu, Johnson</creatorcontrib><creatorcontrib>Kwayisi, Daniel</creatorcontrib><creatorcontrib>Anani, Chris Y.</creatorcontrib><creatorcontrib>Alemayehu, Melesse</creatorcontrib><creatorcontrib>Malaviarachchi, Sanjeewa P.K.</creatorcontrib><creatorcontrib>Nude, Prosper M.</creatorcontrib><creatorcontrib>Su, Ben-Can</creatorcontrib><title>Origin and tectonic significance of the metavolcanic rocks and mafic enclaves from the Palaeoproterozoic Birimian Terrane, SE West African Craton, Ghana</title><title>Geological magazine</title><addtitle>Geol. Mag</addtitle><description>The Palaeoproterozoic Birimian Supergroup of the West African Craton (WAC) consists of volcanic belts composed predominantly of basaltic and andesitic rocks and intervening sedimentary basins composed predominantly of wackes and argillites. Mafic metavolcanic rocks and granitoid-hosted enclaves from the Palaeoproterozoic Lawra Belt of Ghana were analysed for geochemical and Sr–Nd isotopic data to constrain the geological evolution of the southeastern part of the WAC. The metavolcanic rocks display mainly tholeiitic signatures, whereas the enclaves show calc-alkaline signatures. The high SiO2 contents (48.6–68.9 wt%) of the enclaves are suggestive of their evolved character. The high Th/Yb values of the samples relative to that of the mantle array may indicate derivation of their respective magmas from subduction-modified source(s). The rocks show positive εNd values of +0.79 to +2.86 (metavolcanic rocks) and +0.79 to +1.82 (enclaves). These signatures and their Nd model ages (TDM2) of 2.31–2.47 Ga (metavolcanic rocks) and 2.39–2.47 Ga (enclaves) suggest they were probably derived from juvenile mantle-derived protoliths, with possible input of subducted pre-Birimian (Archean?) rocks in their source(s). Their positive Ba–Th and negative Nb–Ta, Zr–Hf and Ti anomalies may indicate their formation through subduction-related magmatism consistent with an arc setting. We propose that the metavolcanic rocks and enclaves from the Lawra Belt formed in a similar island-arc setting. We infer that the granitoids developed through variable degrees of mixing/mingling between basic magma and granitic melt during subduction, when blobs of basic to intermediate parental magma became trapped in the granitic magma to form the enclaves.</description><subject>Africa</subject><subject>alkaline earth metals</subject><subject>andesitic composition</subject><subject>Anomalies</subject><subject>basaltic composition</subject><subject>Belts</subject><subject>Birimian</subject><subject>Birimian Terrane</subject><subject>calc-alkalic composition</subject><subject>Cratons</subject><subject>Evolution</subject><subject>geochemical anomalies</subject><subject>Geochemistry</subject><subject>Geological time</subject><subject>Geology</subject><subject>Ghana</subject><subject>granites</subject><subject>ICP mass spectra</subject><subject>igneous and metamorphic rocks</subject><subject>Igneous rocks</subject><subject>Island arcs</subject><subject>isotopes</subject><subject>Lava</subject><subject>Lawra Belt</subject><subject>mafic composition</subject><subject>mafic enclaves</subject><subject>Magma</subject><subject>magmas</subject><subject>major elements</subject><subject>mantle</subject><subject>mass spectra</subject><subject>metals</subject><subject>metamorphic rocks</subject><subject>metavolcanic rocks</subject><subject>mixing</subject><subject>neodymium</subject><subject>Niobium</subject><subject>Original Article</subject><subject>Paleoproterozoic</subject><subject>Petrogenesis</subject><subject>Petrology</subject><subject>Plate tectonics</subject><subject>plutonic rocks</subject><subject>Precambrian</subject><subject>Proterozoic</subject><subject>protoliths</subject><subject>rare earths</subject><subject>Rock</subject><subject>rock, sediment, soil</subject><subject>Rocks</subject><subject>Sedimentary basins</subject><subject>Signatures</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>spectra</subject><subject>strontium</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Tantalum</subject><subject>Tectonics</subject><subject>tholeiitic composition</subject><subject>trace elements</subject><subject>upper Precambrian</subject><subject>Volcanic belts</subject><subject>West Africa</subject><subject>West African Craton</subject><subject>X-ray fluorescence spectra</subject><subject>Zirconium</subject><issn>0016-7568</issn><issn>1469-5081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kVtLHDEUgINYcNX-gL4FfKzT5rK5zKNd1BYEBZX2bTibOVljZxKbjIr9Jf25zbqCheJTLuc75zvJIeQDZ5844-bzJWNcG6Utb-tOsR9bZMbnum0Us3ybzNbhZh3fIbul3NajZNbOyJ_zHFYhUog9ndBNKQZHS1jF4IOD6JAmT6cbpCNO8JCGeleBnNzP8pwzQuUoRjfAAxbqcxqf8QsYANNdThPm9DtV5kvIYQwQ6RXmDBEP6eUx_Y5lokc-r110kaH6D-npDUTYJ-88DAXfv6x75Prk-GrxtTk7P_22ODprQBo9NRKN65HZJVOe614r2wovFS6l80aIpbG69QIsGGtZP9eohEDpERUDK52Re-RgU7f2-uu-ttPdpvscq7ITc2mkMIKxSvEN5XIqJaPv7uprID91nHXrAXT_DaDmfNzkrDAVF-of4WPKQ_-PgAnWMdMq3VZavhhgXObQr_CVe9vxF6QsmGo</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Sakyi, Patrick Asamoah</creator><creator>Su, Ben-Xun</creator><creator>Manu, Johnson</creator><creator>Kwayisi, Daniel</creator><creator>Anani, Chris Y.</creator><creator>Alemayehu, Melesse</creator><creator>Malaviarachchi, Sanjeewa P.K.</creator><creator>Nude, Prosper M.</creator><creator>Su, Ben-Can</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0002-7536-6264</orcidid></search><sort><creationdate>202008</creationdate><title>Origin and tectonic significance of the metavolcanic rocks and mafic enclaves from the Palaeoproterozoic Birimian Terrane, SE West African Craton, Ghana</title><author>Sakyi, Patrick Asamoah ; Su, Ben-Xun ; Manu, Johnson ; Kwayisi, Daniel ; Anani, Chris Y. ; Alemayehu, Melesse ; Malaviarachchi, Sanjeewa P.K. ; Nude, Prosper M. ; Su, Ben-Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-3e7cde08b05f16d65892f35eb3cf722b7869f2a8a7880d46e522e3fee50a83c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Africa</topic><topic>alkaline earth metals</topic><topic>andesitic composition</topic><topic>Anomalies</topic><topic>basaltic composition</topic><topic>Belts</topic><topic>Birimian</topic><topic>Birimian Terrane</topic><topic>calc-alkalic composition</topic><topic>Cratons</topic><topic>Evolution</topic><topic>geochemical anomalies</topic><topic>Geochemistry</topic><topic>Geological time</topic><topic>Geology</topic><topic>Ghana</topic><topic>granites</topic><topic>ICP mass spectra</topic><topic>igneous and metamorphic rocks</topic><topic>Igneous rocks</topic><topic>Island arcs</topic><topic>isotopes</topic><topic>Lava</topic><topic>Lawra Belt</topic><topic>mafic composition</topic><topic>mafic enclaves</topic><topic>Magma</topic><topic>magmas</topic><topic>major elements</topic><topic>mantle</topic><topic>mass spectra</topic><topic>metals</topic><topic>metamorphic rocks</topic><topic>metavolcanic rocks</topic><topic>mixing</topic><topic>neodymium</topic><topic>Niobium</topic><topic>Original Article</topic><topic>Paleoproterozoic</topic><topic>Petrogenesis</topic><topic>Petrology</topic><topic>Plate tectonics</topic><topic>plutonic rocks</topic><topic>Precambrian</topic><topic>Proterozoic</topic><topic>protoliths</topic><topic>rare earths</topic><topic>Rock</topic><topic>rock, sediment, soil</topic><topic>Rocks</topic><topic>Sedimentary basins</topic><topic>Signatures</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>spectra</topic><topic>strontium</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Tantalum</topic><topic>Tectonics</topic><topic>tholeiitic composition</topic><topic>trace elements</topic><topic>upper Precambrian</topic><topic>Volcanic belts</topic><topic>West Africa</topic><topic>West African Craton</topic><topic>X-ray fluorescence spectra</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakyi, Patrick Asamoah</creatorcontrib><creatorcontrib>Su, Ben-Xun</creatorcontrib><creatorcontrib>Manu, Johnson</creatorcontrib><creatorcontrib>Kwayisi, Daniel</creatorcontrib><creatorcontrib>Anani, Chris Y.</creatorcontrib><creatorcontrib>Alemayehu, Melesse</creatorcontrib><creatorcontrib>Malaviarachchi, Sanjeewa P.K.</creatorcontrib><creatorcontrib>Nude, Prosper M.</creatorcontrib><creatorcontrib>Su, Ben-Can</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Geological magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakyi, Patrick Asamoah</au><au>Su, Ben-Xun</au><au>Manu, Johnson</au><au>Kwayisi, Daniel</au><au>Anani, Chris Y.</au><au>Alemayehu, Melesse</au><au>Malaviarachchi, Sanjeewa P.K.</au><au>Nude, Prosper M.</au><au>Su, Ben-Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin and tectonic significance of the metavolcanic rocks and mafic enclaves from the Palaeoproterozoic Birimian Terrane, SE West African Craton, Ghana</atitle><jtitle>Geological magazine</jtitle><addtitle>Geol. Mag</addtitle><date>2020-08</date><risdate>2020</risdate><volume>157</volume><issue>8</issue><spage>1349</spage><epage>1366</epage><pages>1349-1366</pages><issn>0016-7568</issn><eissn>1469-5081</eissn><abstract>The Palaeoproterozoic Birimian Supergroup of the West African Craton (WAC) consists of volcanic belts composed predominantly of basaltic and andesitic rocks and intervening sedimentary basins composed predominantly of wackes and argillites. Mafic metavolcanic rocks and granitoid-hosted enclaves from the Palaeoproterozoic Lawra Belt of Ghana were analysed for geochemical and Sr–Nd isotopic data to constrain the geological evolution of the southeastern part of the WAC. The metavolcanic rocks display mainly tholeiitic signatures, whereas the enclaves show calc-alkaline signatures. The high SiO2 contents (48.6–68.9 wt%) of the enclaves are suggestive of their evolved character. The high Th/Yb values of the samples relative to that of the mantle array may indicate derivation of their respective magmas from subduction-modified source(s). The rocks show positive εNd values of +0.79 to +2.86 (metavolcanic rocks) and +0.79 to +1.82 (enclaves). These signatures and their Nd model ages (TDM2) of 2.31–2.47 Ga (metavolcanic rocks) and 2.39–2.47 Ga (enclaves) suggest they were probably derived from juvenile mantle-derived protoliths, with possible input of subducted pre-Birimian (Archean?) rocks in their source(s). Their positive Ba–Th and negative Nb–Ta, Zr–Hf and Ti anomalies may indicate their formation through subduction-related magmatism consistent with an arc setting. We propose that the metavolcanic rocks and enclaves from the Lawra Belt formed in a similar island-arc setting. We infer that the granitoids developed through variable degrees of mixing/mingling between basic magma and granitic melt during subduction, when blobs of basic to intermediate parental magma became trapped in the granitic magma to form the enclaves.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S001675681900150X</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7536-6264</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-7568
ispartof Geological magazine, 2020-08, Vol.157 (8), p.1349-1366
issn 0016-7568
1469-5081
language eng
recordid cdi_proquest_journals_2437327200
source Cambridge Journals
subjects Africa
alkaline earth metals
andesitic composition
Anomalies
basaltic composition
Belts
Birimian
Birimian Terrane
calc-alkalic composition
Cratons
Evolution
geochemical anomalies
Geochemistry
Geological time
Geology
Ghana
granites
ICP mass spectra
igneous and metamorphic rocks
Igneous rocks
Island arcs
isotopes
Lava
Lawra Belt
mafic composition
mafic enclaves
Magma
magmas
major elements
mantle
mass spectra
metals
metamorphic rocks
metavolcanic rocks
mixing
neodymium
Niobium
Original Article
Paleoproterozoic
Petrogenesis
Petrology
Plate tectonics
plutonic rocks
Precambrian
Proterozoic
protoliths
rare earths
Rock
rock, sediment, soil
Rocks
Sedimentary basins
Signatures
Silica
Silicon dioxide
spectra
strontium
Subduction
Subduction (geology)
Tantalum
Tectonics
tholeiitic composition
trace elements
upper Precambrian
Volcanic belts
West Africa
West African Craton
X-ray fluorescence spectra
Zirconium
title Origin and tectonic significance of the metavolcanic rocks and mafic enclaves from the Palaeoproterozoic Birimian Terrane, SE West African Craton, Ghana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20and%20tectonic%20significance%20of%20the%20metavolcanic%20rocks%20and%20mafic%20enclaves%20from%20the%20Palaeoproterozoic%20Birimian%20Terrane,%20SE%20West%20African%20Craton,%20Ghana&rft.jtitle=Geological%20magazine&rft.au=Sakyi,%20Patrick%20Asamoah&rft.date=2020-08&rft.volume=157&rft.issue=8&rft.spage=1349&rft.epage=1366&rft.pages=1349-1366&rft.issn=0016-7568&rft.eissn=1469-5081&rft_id=info:doi/10.1017/S001675681900150X&rft_dat=%3Cproquest_cross%3E2437327200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437327200&rft_id=info:pmid/&rft_cupid=10_1017_S001675681900150X&rfr_iscdi=true