Gravitating–radiative magnetohydrodynamic surface waves
Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much sma...
Gespeichert in:
Veröffentlicht in: | Journal of plasma physics 2020-08, Vol.86 (4), Article 905860406 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of plasma physics |
container_volume | 86 |
creator | Ruby, R. Rozina, Ch Tsintsadze, N. L. Iqbal, Z. |
description | Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much smaller than the ion gyrofrequency, having an equilibrium background state. It is found that the separation of charges on the surface is followed by thermal motion, which further leads to a negative pressure gradient normal to the surface, hence the plasma–vacuum interface is under tension due to two different types of oppositely directed pressures. The dusty plasma RMHD set of equations admits a linear dispersion relation of surface Jeans instability of an incompressible dusty plasma, which exhibits a strong coupling between the electron surface charge and dust surface mass densities and we conclude that the surface densities of both electrons and dust as well as the dust inertia play major roles in the gravitational collapse of the surface of astrophysical objects such as stars, galaxies etc. Further, the growth rate of radiative surface waves is found to be function of both the temperature inhomogeneity, appearing due to thermal radiation heat flux, as well as the thermal radiation pressure. The present findings of charged surface waves may seek application at the astroscales. |
doi_str_mv | 10.1017/S0022377820000720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437265686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377820000720</cupid><sourcerecordid>2437265686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-3c05610cc1c320ffc35499a9b824ca6a6c7b67ad82388c2b4f0feadaa747e6113</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRMFYfwFvBc3R2N93ZHKVoKxQ8qOcw2ezWFJPU3aSSm-_gG_okJrTgQZzLDPzf_w_8jF1yuObA8eYJQAiJqAUMgwKOWMQTlcaoAY9ZNMrxqJ-ysxA2AyNBYMTShadd2VJb1uvvzy9PRTncOzutaF3btnntC98UfU1Vaaah846MnX7QzoZzduLoLdiLw56wl_u75_kyXj0uHua3q9hIjm0sDcwUB2O4kQKcM3KWpCmluRaJIUXKYK6QCi2k1kbkiQNnqSDCBK3iXE7Y1T5365v3zoY22zSdr4eXmUgkCjVTWg0U31PGNyF467KtLyvyfcYhGxvK_jQ0eOTBQ1Xuy2Jtf6P_d_0AxWpo5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437265686</pqid></control><display><type>article</type><title>Gravitating–radiative magnetohydrodynamic surface waves</title><source>Cambridge University Press Journals Complete</source><creator>Ruby, R. ; Rozina, Ch ; Tsintsadze, N. L. ; Iqbal, Z.</creator><creatorcontrib>Ruby, R. ; Rozina, Ch ; Tsintsadze, N. L. ; Iqbal, Z.</creatorcontrib><description>Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much smaller than the ion gyrofrequency, having an equilibrium background state. It is found that the separation of charges on the surface is followed by thermal motion, which further leads to a negative pressure gradient normal to the surface, hence the plasma–vacuum interface is under tension due to two different types of oppositely directed pressures. The dusty plasma RMHD set of equations admits a linear dispersion relation of surface Jeans instability of an incompressible dusty plasma, which exhibits a strong coupling between the electron surface charge and dust surface mass densities and we conclude that the surface densities of both electrons and dust as well as the dust inertia play major roles in the gravitational collapse of the surface of astrophysical objects such as stars, galaxies etc. Further, the growth rate of radiative surface waves is found to be function of both the temperature inhomogeneity, appearing due to thermal radiation heat flux, as well as the thermal radiation pressure. The present findings of charged surface waves may seek application at the astroscales.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377820000720</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computational fluid dynamics ; Dust ; Dusty plasmas ; Electric fields ; Fluid flow ; Galaxies ; Gravitational collapse ; Gravity waves ; Gyrofrequency ; Heat flux ; Inhomogeneity ; Interfaces ; Magnetohydrodynamics ; Mathematical analysis ; Maxwell's equations ; Plasma ; Plasma physics ; Radiation pressure ; Star & galaxy formation ; Surface charge ; Surface stability ; Surface waves ; Thermal radiation</subject><ispartof>Journal of plasma physics, 2020-08, Vol.86 (4), Article 905860406</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-3c05610cc1c320ffc35499a9b824ca6a6c7b67ad82388c2b4f0feadaa747e6113</citedby><cites>FETCH-LOGICAL-c317t-3c05610cc1c320ffc35499a9b824ca6a6c7b67ad82388c2b4f0feadaa747e6113</cites><orcidid>0000-0001-6715-3675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377820000720/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Ruby, R.</creatorcontrib><creatorcontrib>Rozina, Ch</creatorcontrib><creatorcontrib>Tsintsadze, N. L.</creatorcontrib><creatorcontrib>Iqbal, Z.</creatorcontrib><title>Gravitating–radiative magnetohydrodynamic surface waves</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much smaller than the ion gyrofrequency, having an equilibrium background state. It is found that the separation of charges on the surface is followed by thermal motion, which further leads to a negative pressure gradient normal to the surface, hence the plasma–vacuum interface is under tension due to two different types of oppositely directed pressures. The dusty plasma RMHD set of equations admits a linear dispersion relation of surface Jeans instability of an incompressible dusty plasma, which exhibits a strong coupling between the electron surface charge and dust surface mass densities and we conclude that the surface densities of both electrons and dust as well as the dust inertia play major roles in the gravitational collapse of the surface of astrophysical objects such as stars, galaxies etc. Further, the growth rate of radiative surface waves is found to be function of both the temperature inhomogeneity, appearing due to thermal radiation heat flux, as well as the thermal radiation pressure. The present findings of charged surface waves may seek application at the astroscales.</description><subject>Computational fluid dynamics</subject><subject>Dust</subject><subject>Dusty plasmas</subject><subject>Electric fields</subject><subject>Fluid flow</subject><subject>Galaxies</subject><subject>Gravitational collapse</subject><subject>Gravity waves</subject><subject>Gyrofrequency</subject><subject>Heat flux</subject><subject>Inhomogeneity</subject><subject>Interfaces</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Maxwell's equations</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Radiation pressure</subject><subject>Star & galaxy formation</subject><subject>Surface charge</subject><subject>Surface stability</subject><subject>Surface waves</subject><subject>Thermal radiation</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKw0AQhhdRMFYfwFvBc3R2N93ZHKVoKxQ8qOcw2ezWFJPU3aSSm-_gG_okJrTgQZzLDPzf_w_8jF1yuObA8eYJQAiJqAUMgwKOWMQTlcaoAY9ZNMrxqJ-ysxA2AyNBYMTShadd2VJb1uvvzy9PRTncOzutaF3btnntC98UfU1Vaaah846MnX7QzoZzduLoLdiLw56wl_u75_kyXj0uHua3q9hIjm0sDcwUB2O4kQKcM3KWpCmluRaJIUXKYK6QCi2k1kbkiQNnqSDCBK3iXE7Y1T5365v3zoY22zSdr4eXmUgkCjVTWg0U31PGNyF467KtLyvyfcYhGxvK_jQ0eOTBQ1Xuy2Jtf6P_d_0AxWpo5w</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ruby, R.</creator><creator>Rozina, Ch</creator><creator>Tsintsadze, N. L.</creator><creator>Iqbal, Z.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6715-3675</orcidid></search><sort><creationdate>20200801</creationdate><title>Gravitating–radiative magnetohydrodynamic surface waves</title><author>Ruby, R. ; Rozina, Ch ; Tsintsadze, N. L. ; Iqbal, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-3c05610cc1c320ffc35499a9b824ca6a6c7b67ad82388c2b4f0feadaa747e6113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Dust</topic><topic>Dusty plasmas</topic><topic>Electric fields</topic><topic>Fluid flow</topic><topic>Galaxies</topic><topic>Gravitational collapse</topic><topic>Gravity waves</topic><topic>Gyrofrequency</topic><topic>Heat flux</topic><topic>Inhomogeneity</topic><topic>Interfaces</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Maxwell's equations</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Radiation pressure</topic><topic>Star & galaxy formation</topic><topic>Surface charge</topic><topic>Surface stability</topic><topic>Surface waves</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruby, R.</creatorcontrib><creatorcontrib>Rozina, Ch</creatorcontrib><creatorcontrib>Tsintsadze, N. L.</creatorcontrib><creatorcontrib>Iqbal, Z.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruby, R.</au><au>Rozina, Ch</au><au>Tsintsadze, N. L.</au><au>Iqbal, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitating–radiative magnetohydrodynamic surface waves</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>86</volume><issue>4</issue><artnum>905860406</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much smaller than the ion gyrofrequency, having an equilibrium background state. It is found that the separation of charges on the surface is followed by thermal motion, which further leads to a negative pressure gradient normal to the surface, hence the plasma–vacuum interface is under tension due to two different types of oppositely directed pressures. The dusty plasma RMHD set of equations admits a linear dispersion relation of surface Jeans instability of an incompressible dusty plasma, which exhibits a strong coupling between the electron surface charge and dust surface mass densities and we conclude that the surface densities of both electrons and dust as well as the dust inertia play major roles in the gravitational collapse of the surface of astrophysical objects such as stars, galaxies etc. Further, the growth rate of radiative surface waves is found to be function of both the temperature inhomogeneity, appearing due to thermal radiation heat flux, as well as the thermal radiation pressure. The present findings of charged surface waves may seek application at the astroscales.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377820000720</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6715-3675</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3778 |
ispartof | Journal of plasma physics, 2020-08, Vol.86 (4), Article 905860406 |
issn | 0022-3778 1469-7807 |
language | eng |
recordid | cdi_proquest_journals_2437265686 |
source | Cambridge University Press Journals Complete |
subjects | Computational fluid dynamics Dust Dusty plasmas Electric fields Fluid flow Galaxies Gravitational collapse Gravity waves Gyrofrequency Heat flux Inhomogeneity Interfaces Magnetohydrodynamics Mathematical analysis Maxwell's equations Plasma Plasma physics Radiation pressure Star & galaxy formation Surface charge Surface stability Surface waves Thermal radiation |
title | Gravitating–radiative magnetohydrodynamic surface waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitating%E2%80%93radiative%20magnetohydrodynamic%20surface%20waves&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Ruby,%20R.&rft.date=2020-08-01&rft.volume=86&rft.issue=4&rft.artnum=905860406&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377820000720&rft_dat=%3Cproquest_cross%3E2437265686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437265686&rft_id=info:pmid/&rft_cupid=10_1017_S0022377820000720&rfr_iscdi=true |