Gravitating–radiative magnetohydrodynamic surface waves

Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much sma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2020-08, Vol.86 (4), Article 905860406
Hauptverfasser: Ruby, R., Rozina, Ch, Tsintsadze, N. L., Iqbal, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of plasma physics
container_volume 86
creator Ruby, R.
Rozina, Ch
Tsintsadze, N. L.
Iqbal, Z.
description Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much smaller than the ion gyrofrequency, having an equilibrium background state. It is found that the separation of charges on the surface is followed by thermal motion, which further leads to a negative pressure gradient normal to the surface, hence the plasma–vacuum interface is under tension due to two different types of oppositely directed pressures. The dusty plasma RMHD set of equations admits a linear dispersion relation of surface Jeans instability of an incompressible dusty plasma, which exhibits a strong coupling between the electron surface charge and dust surface mass densities and we conclude that the surface densities of both electrons and dust as well as the dust inertia play major roles in the gravitational collapse of the surface of astrophysical objects such as stars, galaxies etc. Further, the growth rate of radiative surface waves is found to be function of both the temperature inhomogeneity, appearing due to thermal radiation heat flux, as well as the thermal radiation pressure. The present findings of charged surface waves may seek application at the astroscales.
doi_str_mv 10.1017/S0022377820000720
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437265686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377820000720</cupid><sourcerecordid>2437265686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-3c05610cc1c320ffc35499a9b824ca6a6c7b67ad82388c2b4f0feadaa747e6113</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhhdRMFYfwFvBc3R2N93ZHKVoKxQ8qOcw2ezWFJPU3aSSm-_gG_okJrTgQZzLDPzf_w_8jF1yuObA8eYJQAiJqAUMgwKOWMQTlcaoAY9ZNMrxqJ-ysxA2AyNBYMTShadd2VJb1uvvzy9PRTncOzutaF3btnntC98UfU1Vaaah846MnX7QzoZzduLoLdiLw56wl_u75_kyXj0uHua3q9hIjm0sDcwUB2O4kQKcM3KWpCmluRaJIUXKYK6QCi2k1kbkiQNnqSDCBK3iXE7Y1T5365v3zoY22zSdr4eXmUgkCjVTWg0U31PGNyF467KtLyvyfcYhGxvK_jQ0eOTBQ1Xuy2Jtf6P_d_0AxWpo5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437265686</pqid></control><display><type>article</type><title>Gravitating–radiative magnetohydrodynamic surface waves</title><source>Cambridge University Press Journals Complete</source><creator>Ruby, R. ; Rozina, Ch ; Tsintsadze, N. L. ; Iqbal, Z.</creator><creatorcontrib>Ruby, R. ; Rozina, Ch ; Tsintsadze, N. L. ; Iqbal, Z.</creatorcontrib><description>Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much smaller than the ion gyrofrequency, having an equilibrium background state. It is found that the separation of charges on the surface is followed by thermal motion, which further leads to a negative pressure gradient normal to the surface, hence the plasma–vacuum interface is under tension due to two different types of oppositely directed pressures. The dusty plasma RMHD set of equations admits a linear dispersion relation of surface Jeans instability of an incompressible dusty plasma, which exhibits a strong coupling between the electron surface charge and dust surface mass densities and we conclude that the surface densities of both electrons and dust as well as the dust inertia play major roles in the gravitational collapse of the surface of astrophysical objects such as stars, galaxies etc. Further, the growth rate of radiative surface waves is found to be function of both the temperature inhomogeneity, appearing due to thermal radiation heat flux, as well as the thermal radiation pressure. The present findings of charged surface waves may seek application at the astroscales.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377820000720</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computational fluid dynamics ; Dust ; Dusty plasmas ; Electric fields ; Fluid flow ; Galaxies ; Gravitational collapse ; Gravity waves ; Gyrofrequency ; Heat flux ; Inhomogeneity ; Interfaces ; Magnetohydrodynamics ; Mathematical analysis ; Maxwell's equations ; Plasma ; Plasma physics ; Radiation pressure ; Star &amp; galaxy formation ; Surface charge ; Surface stability ; Surface waves ; Thermal radiation</subject><ispartof>Journal of plasma physics, 2020-08, Vol.86 (4), Article 905860406</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-3c05610cc1c320ffc35499a9b824ca6a6c7b67ad82388c2b4f0feadaa747e6113</citedby><cites>FETCH-LOGICAL-c317t-3c05610cc1c320ffc35499a9b824ca6a6c7b67ad82388c2b4f0feadaa747e6113</cites><orcidid>0000-0001-6715-3675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377820000720/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Ruby, R.</creatorcontrib><creatorcontrib>Rozina, Ch</creatorcontrib><creatorcontrib>Tsintsadze, N. L.</creatorcontrib><creatorcontrib>Iqbal, Z.</creatorcontrib><title>Gravitating–radiative magnetohydrodynamic surface waves</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much smaller than the ion gyrofrequency, having an equilibrium background state. It is found that the separation of charges on the surface is followed by thermal motion, which further leads to a negative pressure gradient normal to the surface, hence the plasma–vacuum interface is under tension due to two different types of oppositely directed pressures. The dusty plasma RMHD set of equations admits a linear dispersion relation of surface Jeans instability of an incompressible dusty plasma, which exhibits a strong coupling between the electron surface charge and dust surface mass densities and we conclude that the surface densities of both electrons and dust as well as the dust inertia play major roles in the gravitational collapse of the surface of astrophysical objects such as stars, galaxies etc. Further, the growth rate of radiative surface waves is found to be function of both the temperature inhomogeneity, appearing due to thermal radiation heat flux, as well as the thermal radiation pressure. The present findings of charged surface waves may seek application at the astroscales.</description><subject>Computational fluid dynamics</subject><subject>Dust</subject><subject>Dusty plasmas</subject><subject>Electric fields</subject><subject>Fluid flow</subject><subject>Galaxies</subject><subject>Gravitational collapse</subject><subject>Gravity waves</subject><subject>Gyrofrequency</subject><subject>Heat flux</subject><subject>Inhomogeneity</subject><subject>Interfaces</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Maxwell's equations</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Radiation pressure</subject><subject>Star &amp; galaxy formation</subject><subject>Surface charge</subject><subject>Surface stability</subject><subject>Surface waves</subject><subject>Thermal radiation</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKw0AQhhdRMFYfwFvBc3R2N93ZHKVoKxQ8qOcw2ezWFJPU3aSSm-_gG_okJrTgQZzLDPzf_w_8jF1yuObA8eYJQAiJqAUMgwKOWMQTlcaoAY9ZNMrxqJ-ysxA2AyNBYMTShadd2VJb1uvvzy9PRTncOzutaF3btnntC98UfU1Vaaah846MnX7QzoZzduLoLdiLw56wl_u75_kyXj0uHua3q9hIjm0sDcwUB2O4kQKcM3KWpCmluRaJIUXKYK6QCi2k1kbkiQNnqSDCBK3iXE7Y1T5365v3zoY22zSdr4eXmUgkCjVTWg0U31PGNyF467KtLyvyfcYhGxvK_jQ0eOTBQ1Xuy2Jtf6P_d_0AxWpo5w</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ruby, R.</creator><creator>Rozina, Ch</creator><creator>Tsintsadze, N. L.</creator><creator>Iqbal, Z.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6715-3675</orcidid></search><sort><creationdate>20200801</creationdate><title>Gravitating–radiative magnetohydrodynamic surface waves</title><author>Ruby, R. ; Rozina, Ch ; Tsintsadze, N. L. ; Iqbal, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-3c05610cc1c320ffc35499a9b824ca6a6c7b67ad82388c2b4f0feadaa747e6113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Dust</topic><topic>Dusty plasmas</topic><topic>Electric fields</topic><topic>Fluid flow</topic><topic>Galaxies</topic><topic>Gravitational collapse</topic><topic>Gravity waves</topic><topic>Gyrofrequency</topic><topic>Heat flux</topic><topic>Inhomogeneity</topic><topic>Interfaces</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Maxwell's equations</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Radiation pressure</topic><topic>Star &amp; galaxy formation</topic><topic>Surface charge</topic><topic>Surface stability</topic><topic>Surface waves</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruby, R.</creatorcontrib><creatorcontrib>Rozina, Ch</creatorcontrib><creatorcontrib>Tsintsadze, N. L.</creatorcontrib><creatorcontrib>Iqbal, Z.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruby, R.</au><au>Rozina, Ch</au><au>Tsintsadze, N. L.</au><au>Iqbal, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitating–radiative magnetohydrodynamic surface waves</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>86</volume><issue>4</issue><artnum>905860406</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much smaller than the ion gyrofrequency, having an equilibrium background state. It is found that the separation of charges on the surface is followed by thermal motion, which further leads to a negative pressure gradient normal to the surface, hence the plasma–vacuum interface is under tension due to two different types of oppositely directed pressures. The dusty plasma RMHD set of equations admits a linear dispersion relation of surface Jeans instability of an incompressible dusty plasma, which exhibits a strong coupling between the electron surface charge and dust surface mass densities and we conclude that the surface densities of both electrons and dust as well as the dust inertia play major roles in the gravitational collapse of the surface of astrophysical objects such as stars, galaxies etc. Further, the growth rate of radiative surface waves is found to be function of both the temperature inhomogeneity, appearing due to thermal radiation heat flux, as well as the thermal radiation pressure. The present findings of charged surface waves may seek application at the astroscales.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377820000720</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6715-3675</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2020-08, Vol.86 (4), Article 905860406
issn 0022-3778
1469-7807
language eng
recordid cdi_proquest_journals_2437265686
source Cambridge University Press Journals Complete
subjects Computational fluid dynamics
Dust
Dusty plasmas
Electric fields
Fluid flow
Galaxies
Gravitational collapse
Gravity waves
Gyrofrequency
Heat flux
Inhomogeneity
Interfaces
Magnetohydrodynamics
Mathematical analysis
Maxwell's equations
Plasma
Plasma physics
Radiation pressure
Star & galaxy formation
Surface charge
Surface stability
Surface waves
Thermal radiation
title Gravitating–radiative magnetohydrodynamic surface waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitating%E2%80%93radiative%20magnetohydrodynamic%20surface%20waves&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Ruby,%20R.&rft.date=2020-08-01&rft.volume=86&rft.issue=4&rft.artnum=905860406&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377820000720&rft_dat=%3Cproquest_cross%3E2437265686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437265686&rft_id=info:pmid/&rft_cupid=10_1017_S0022377820000720&rfr_iscdi=true