Scaling Laws for Regional Stratification at the Top of Earth's Core

Seismic and geomagnetic observations have been used to argue both for and against a global stratified layer at the top of Earth's outer core. Recently, we used numerical models of turbulent thermal convection to show that imposed lateral variations in core‐mantle boundary (CMB) heat flow can gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2020-08, Vol.47 (16), p.n/a
Hauptverfasser: Mound, Jonathan E., Davies, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Geophysical research letters
container_volume 47
creator Mound, Jonathan E.
Davies, Christopher J.
description Seismic and geomagnetic observations have been used to argue both for and against a global stratified layer at the top of Earth's outer core. Recently, we used numerical models of turbulent thermal convection to show that imposed lateral variations in core‐mantle boundary (CMB) heat flow can give rise to regional lenses of stratified fluid at the top of the core while the bulk of the core remains actively convecting. Here, we develop theoretical scaling laws to extrapolate the properties of regional stratified lenses measured in simulations to the conditions of Earth's core. We estimate that regional stratified lenses in Earth's core have thicknesses of up to a few hundred kilometres and Brunt‐Väisälä frequencies of hours, consistent with independent observational constraints. The location, thickness, and strength of the stratified regions would change over geological time scales in response to the slowly evolving CMB heat flux heterogeneity imposed by mantle convection. Key Points CMB heat flux heterogeneity results in regional lenses of stratified fluid at the top of the core We develop scaling laws for the strength and thickness of these lenses Extrapolations to Earth‐like conditions predict lenses a few hundred kilometres thick
doi_str_mv 10.1029/2020GL087715
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437260492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437260492</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3674-229dcd3df5a5d4fe06f022e0a43ee77f46894af2325256fc28a13196ec0a64d03</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pzQ8Q8ODF6stLmjRHKXMKBWGb5xDaZOuoy0w6xr69lXrw5OW9d_jx5_En5JbBIwPUTwgI8woKpVh-RiZMC5EVAOqcTAD0cKOSl-QqpS0AcOBsQsplbbt2t6aVPSbqQ6QLt27DznZ02Ufbt76thxl21Pa03zi6CnsaPJ3Z2G_uEy1DdNfkwtsuuZvfPSUfL7NV-ZpV7_O38rnKLJdKZIi6qRve-NzmjfAOpAdEB1Zw55TyQhZaWI8cc8ylr7GwjDMtXQ1Wigb4lNyNufsYvg4u9WYbDnF4NRkUXKEEoXFQD6OqY0gpOm_2sf208WQYmJ-azN-aBo4jP7adO_1rzXxRSdCF4N8ZFmZ2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437260492</pqid></control><display><type>article</type><title>Scaling Laws for Regional Stratification at the Top of Earth's Core</title><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mound, Jonathan E. ; Davies, Christopher J.</creator><creatorcontrib>Mound, Jonathan E. ; Davies, Christopher J.</creatorcontrib><description>Seismic and geomagnetic observations have been used to argue both for and against a global stratified layer at the top of Earth's outer core. Recently, we used numerical models of turbulent thermal convection to show that imposed lateral variations in core‐mantle boundary (CMB) heat flow can give rise to regional lenses of stratified fluid at the top of the core while the bulk of the core remains actively convecting. Here, we develop theoretical scaling laws to extrapolate the properties of regional stratified lenses measured in simulations to the conditions of Earth's core. We estimate that regional stratified lenses in Earth's core have thicknesses of up to a few hundred kilometres and Brunt‐Väisälä frequencies of hours, consistent with independent observational constraints. The location, thickness, and strength of the stratified regions would change over geological time scales in response to the slowly evolving CMB heat flux heterogeneity imposed by mantle convection. Key Points CMB heat flux heterogeneity results in regional lenses of stratified fluid at the top of the core We develop scaling laws for the strength and thickness of these lenses Extrapolations to Earth‐like conditions predict lenses a few hundred kilometres thick</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL087715</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Brunt-Vaisala frequency ; Cellular convection ; Computational fluid dynamics ; Computer simulation ; Convection ; core stratification ; Earth core ; Earth mantle ; Earth's outer core ; fluid dynamics ‐ scaling laws ; Fluid flow ; Free convection ; geodynamics ; Geological time ; Geomagnetic observations ; Geomagnetism ; Heat flow ; Heat flux ; Heat transfer ; Heat transmission ; Heterogeneity ; Lenses ; Mantle convection ; Mathematical models ; Numerical models ; Regional development ; Scaling ; Scaling laws ; Stratification ; Thermal convection ; Thickness</subject><ispartof>Geophysical research letters, 2020-08, Vol.47 (16), p.n/a</ispartof><rights>2020. The Authors.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3674-229dcd3df5a5d4fe06f022e0a43ee77f46894af2325256fc28a13196ec0a64d03</citedby><cites>FETCH-LOGICAL-a3674-229dcd3df5a5d4fe06f022e0a43ee77f46894af2325256fc28a13196ec0a64d03</cites><orcidid>0000-0002-1243-6915 ; 0000-0002-1074-3815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL087715$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL087715$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Mound, Jonathan E.</creatorcontrib><creatorcontrib>Davies, Christopher J.</creatorcontrib><title>Scaling Laws for Regional Stratification at the Top of Earth's Core</title><title>Geophysical research letters</title><description>Seismic and geomagnetic observations have been used to argue both for and against a global stratified layer at the top of Earth's outer core. Recently, we used numerical models of turbulent thermal convection to show that imposed lateral variations in core‐mantle boundary (CMB) heat flow can give rise to regional lenses of stratified fluid at the top of the core while the bulk of the core remains actively convecting. Here, we develop theoretical scaling laws to extrapolate the properties of regional stratified lenses measured in simulations to the conditions of Earth's core. We estimate that regional stratified lenses in Earth's core have thicknesses of up to a few hundred kilometres and Brunt‐Väisälä frequencies of hours, consistent with independent observational constraints. The location, thickness, and strength of the stratified regions would change over geological time scales in response to the slowly evolving CMB heat flux heterogeneity imposed by mantle convection. Key Points CMB heat flux heterogeneity results in regional lenses of stratified fluid at the top of the core We develop scaling laws for the strength and thickness of these lenses Extrapolations to Earth‐like conditions predict lenses a few hundred kilometres thick</description><subject>Brunt-Vaisala frequency</subject><subject>Cellular convection</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>core stratification</subject><subject>Earth core</subject><subject>Earth mantle</subject><subject>Earth's outer core</subject><subject>fluid dynamics ‐ scaling laws</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>geodynamics</subject><subject>Geological time</subject><subject>Geomagnetic observations</subject><subject>Geomagnetism</subject><subject>Heat flow</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Heterogeneity</subject><subject>Lenses</subject><subject>Mantle convection</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Regional development</subject><subject>Scaling</subject><subject>Scaling laws</subject><subject>Stratification</subject><subject>Thermal convection</subject><subject>Thickness</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90EFLwzAUB_AgCs7pzQ8Q8ODF6stLmjRHKXMKBWGb5xDaZOuoy0w6xr69lXrw5OW9d_jx5_En5JbBIwPUTwgI8woKpVh-RiZMC5EVAOqcTAD0cKOSl-QqpS0AcOBsQsplbbt2t6aVPSbqQ6QLt27DznZ02Ufbt76thxl21Pa03zi6CnsaPJ3Z2G_uEy1DdNfkwtsuuZvfPSUfL7NV-ZpV7_O38rnKLJdKZIi6qRve-NzmjfAOpAdEB1Zw55TyQhZaWI8cc8ylr7GwjDMtXQ1Wigb4lNyNufsYvg4u9WYbDnF4NRkUXKEEoXFQD6OqY0gpOm_2sf208WQYmJ-azN-aBo4jP7adO_1rzXxRSdCF4N8ZFmZ2</recordid><startdate>20200828</startdate><enddate>20200828</enddate><creator>Mound, Jonathan E.</creator><creator>Davies, Christopher J.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1243-6915</orcidid><orcidid>https://orcid.org/0000-0002-1074-3815</orcidid></search><sort><creationdate>20200828</creationdate><title>Scaling Laws for Regional Stratification at the Top of Earth's Core</title><author>Mound, Jonathan E. ; Davies, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3674-229dcd3df5a5d4fe06f022e0a43ee77f46894af2325256fc28a13196ec0a64d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brunt-Vaisala frequency</topic><topic>Cellular convection</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>core stratification</topic><topic>Earth core</topic><topic>Earth mantle</topic><topic>Earth's outer core</topic><topic>fluid dynamics ‐ scaling laws</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>geodynamics</topic><topic>Geological time</topic><topic>Geomagnetic observations</topic><topic>Geomagnetism</topic><topic>Heat flow</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Heterogeneity</topic><topic>Lenses</topic><topic>Mantle convection</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Regional development</topic><topic>Scaling</topic><topic>Scaling laws</topic><topic>Stratification</topic><topic>Thermal convection</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mound, Jonathan E.</creatorcontrib><creatorcontrib>Davies, Christopher J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mound, Jonathan E.</au><au>Davies, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling Laws for Regional Stratification at the Top of Earth's Core</atitle><jtitle>Geophysical research letters</jtitle><date>2020-08-28</date><risdate>2020</risdate><volume>47</volume><issue>16</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Seismic and geomagnetic observations have been used to argue both for and against a global stratified layer at the top of Earth's outer core. Recently, we used numerical models of turbulent thermal convection to show that imposed lateral variations in core‐mantle boundary (CMB) heat flow can give rise to regional lenses of stratified fluid at the top of the core while the bulk of the core remains actively convecting. Here, we develop theoretical scaling laws to extrapolate the properties of regional stratified lenses measured in simulations to the conditions of Earth's core. We estimate that regional stratified lenses in Earth's core have thicknesses of up to a few hundred kilometres and Brunt‐Väisälä frequencies of hours, consistent with independent observational constraints. The location, thickness, and strength of the stratified regions would change over geological time scales in response to the slowly evolving CMB heat flux heterogeneity imposed by mantle convection. Key Points CMB heat flux heterogeneity results in regional lenses of stratified fluid at the top of the core We develop scaling laws for the strength and thickness of these lenses Extrapolations to Earth‐like conditions predict lenses a few hundred kilometres thick</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020GL087715</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1243-6915</orcidid><orcidid>https://orcid.org/0000-0002-1074-3815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2020-08, Vol.47 (16), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2437260492
source Wiley Journals; Wiley Online Library Free Content; Wiley Online Library AGU Free Content; EZB-FREE-00999 freely available EZB journals
subjects Brunt-Vaisala frequency
Cellular convection
Computational fluid dynamics
Computer simulation
Convection
core stratification
Earth core
Earth mantle
Earth's outer core
fluid dynamics ‐ scaling laws
Fluid flow
Free convection
geodynamics
Geological time
Geomagnetic observations
Geomagnetism
Heat flow
Heat flux
Heat transfer
Heat transmission
Heterogeneity
Lenses
Mantle convection
Mathematical models
Numerical models
Regional development
Scaling
Scaling laws
Stratification
Thermal convection
Thickness
title Scaling Laws for Regional Stratification at the Top of Earth's Core
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20Laws%20for%20Regional%20Stratification%20at%20the%20Top%20of%20Earth's%20Core&rft.jtitle=Geophysical%20research%20letters&rft.au=Mound,%20Jonathan%20E.&rft.date=2020-08-28&rft.volume=47&rft.issue=16&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL087715&rft_dat=%3Cproquest_cross%3E2437260492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437260492&rft_id=info:pmid/&rfr_iscdi=true