Scaling Laws for Regional Stratification at the Top of Earth's Core
Seismic and geomagnetic observations have been used to argue both for and against a global stratified layer at the top of Earth's outer core. Recently, we used numerical models of turbulent thermal convection to show that imposed lateral variations in core‐mantle boundary (CMB) heat flow can gi...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2020-08, Vol.47 (16), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 47 |
creator | Mound, Jonathan E. Davies, Christopher J. |
description | Seismic and geomagnetic observations have been used to argue both for and against a global stratified layer at the top of Earth's outer core. Recently, we used numerical models of turbulent thermal convection to show that imposed lateral variations in core‐mantle boundary (CMB) heat flow can give rise to regional lenses of stratified fluid at the top of the core while the bulk of the core remains actively convecting. Here, we develop theoretical scaling laws to extrapolate the properties of regional stratified lenses measured in simulations to the conditions of Earth's core. We estimate that regional stratified lenses in Earth's core have thicknesses of up to a few hundred kilometres and Brunt‐Väisälä frequencies of hours, consistent with independent observational constraints. The location, thickness, and strength of the stratified regions would change over geological time scales in response to the slowly evolving CMB heat flux heterogeneity imposed by mantle convection.
Key Points
CMB heat flux heterogeneity results in regional lenses of stratified fluid at the top of the core
We develop scaling laws for the strength and thickness of these lenses
Extrapolations to Earth‐like conditions predict lenses a few hundred kilometres thick |
doi_str_mv | 10.1029/2020GL087715 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437260492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437260492</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3674-229dcd3df5a5d4fe06f022e0a43ee77f46894af2325256fc28a13196ec0a64d03</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pzQ8Q8ODF6stLmjRHKXMKBWGb5xDaZOuoy0w6xr69lXrw5OW9d_jx5_En5JbBIwPUTwgI8woKpVh-RiZMC5EVAOqcTAD0cKOSl-QqpS0AcOBsQsplbbt2t6aVPSbqQ6QLt27DznZ02Ufbt76thxl21Pa03zi6CnsaPJ3Z2G_uEy1DdNfkwtsuuZvfPSUfL7NV-ZpV7_O38rnKLJdKZIi6qRve-NzmjfAOpAdEB1Zw55TyQhZaWI8cc8ylr7GwjDMtXQ1Wigb4lNyNufsYvg4u9WYbDnF4NRkUXKEEoXFQD6OqY0gpOm_2sf208WQYmJ-azN-aBo4jP7adO_1rzXxRSdCF4N8ZFmZ2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437260492</pqid></control><display><type>article</type><title>Scaling Laws for Regional Stratification at the Top of Earth's Core</title><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mound, Jonathan E. ; Davies, Christopher J.</creator><creatorcontrib>Mound, Jonathan E. ; Davies, Christopher J.</creatorcontrib><description>Seismic and geomagnetic observations have been used to argue both for and against a global stratified layer at the top of Earth's outer core. Recently, we used numerical models of turbulent thermal convection to show that imposed lateral variations in core‐mantle boundary (CMB) heat flow can give rise to regional lenses of stratified fluid at the top of the core while the bulk of the core remains actively convecting. Here, we develop theoretical scaling laws to extrapolate the properties of regional stratified lenses measured in simulations to the conditions of Earth's core. We estimate that regional stratified lenses in Earth's core have thicknesses of up to a few hundred kilometres and Brunt‐Väisälä frequencies of hours, consistent with independent observational constraints. The location, thickness, and strength of the stratified regions would change over geological time scales in response to the slowly evolving CMB heat flux heterogeneity imposed by mantle convection.
Key Points
CMB heat flux heterogeneity results in regional lenses of stratified fluid at the top of the core
We develop scaling laws for the strength and thickness of these lenses
Extrapolations to Earth‐like conditions predict lenses a few hundred kilometres thick</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL087715</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Brunt-Vaisala frequency ; Cellular convection ; Computational fluid dynamics ; Computer simulation ; Convection ; core stratification ; Earth core ; Earth mantle ; Earth's outer core ; fluid dynamics ‐ scaling laws ; Fluid flow ; Free convection ; geodynamics ; Geological time ; Geomagnetic observations ; Geomagnetism ; Heat flow ; Heat flux ; Heat transfer ; Heat transmission ; Heterogeneity ; Lenses ; Mantle convection ; Mathematical models ; Numerical models ; Regional development ; Scaling ; Scaling laws ; Stratification ; Thermal convection ; Thickness</subject><ispartof>Geophysical research letters, 2020-08, Vol.47 (16), p.n/a</ispartof><rights>2020. The Authors.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3674-229dcd3df5a5d4fe06f022e0a43ee77f46894af2325256fc28a13196ec0a64d03</citedby><cites>FETCH-LOGICAL-a3674-229dcd3df5a5d4fe06f022e0a43ee77f46894af2325256fc28a13196ec0a64d03</cites><orcidid>0000-0002-1243-6915 ; 0000-0002-1074-3815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL087715$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL087715$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Mound, Jonathan E.</creatorcontrib><creatorcontrib>Davies, Christopher J.</creatorcontrib><title>Scaling Laws for Regional Stratification at the Top of Earth's Core</title><title>Geophysical research letters</title><description>Seismic and geomagnetic observations have been used to argue both for and against a global stratified layer at the top of Earth's outer core. Recently, we used numerical models of turbulent thermal convection to show that imposed lateral variations in core‐mantle boundary (CMB) heat flow can give rise to regional lenses of stratified fluid at the top of the core while the bulk of the core remains actively convecting. Here, we develop theoretical scaling laws to extrapolate the properties of regional stratified lenses measured in simulations to the conditions of Earth's core. We estimate that regional stratified lenses in Earth's core have thicknesses of up to a few hundred kilometres and Brunt‐Väisälä frequencies of hours, consistent with independent observational constraints. The location, thickness, and strength of the stratified regions would change over geological time scales in response to the slowly evolving CMB heat flux heterogeneity imposed by mantle convection.
Key Points
CMB heat flux heterogeneity results in regional lenses of stratified fluid at the top of the core
We develop scaling laws for the strength and thickness of these lenses
Extrapolations to Earth‐like conditions predict lenses a few hundred kilometres thick</description><subject>Brunt-Vaisala frequency</subject><subject>Cellular convection</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>core stratification</subject><subject>Earth core</subject><subject>Earth mantle</subject><subject>Earth's outer core</subject><subject>fluid dynamics ‐ scaling laws</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>geodynamics</subject><subject>Geological time</subject><subject>Geomagnetic observations</subject><subject>Geomagnetism</subject><subject>Heat flow</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Heterogeneity</subject><subject>Lenses</subject><subject>Mantle convection</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Regional development</subject><subject>Scaling</subject><subject>Scaling laws</subject><subject>Stratification</subject><subject>Thermal convection</subject><subject>Thickness</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90EFLwzAUB_AgCs7pzQ8Q8ODF6stLmjRHKXMKBWGb5xDaZOuoy0w6xr69lXrw5OW9d_jx5_En5JbBIwPUTwgI8woKpVh-RiZMC5EVAOqcTAD0cKOSl-QqpS0AcOBsQsplbbt2t6aVPSbqQ6QLt27DznZ02Ufbt76thxl21Pa03zi6CnsaPJ3Z2G_uEy1DdNfkwtsuuZvfPSUfL7NV-ZpV7_O38rnKLJdKZIi6qRve-NzmjfAOpAdEB1Zw55TyQhZaWI8cc8ylr7GwjDMtXQ1Wigb4lNyNufsYvg4u9WYbDnF4NRkUXKEEoXFQD6OqY0gpOm_2sf208WQYmJ-azN-aBo4jP7adO_1rzXxRSdCF4N8ZFmZ2</recordid><startdate>20200828</startdate><enddate>20200828</enddate><creator>Mound, Jonathan E.</creator><creator>Davies, Christopher J.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1243-6915</orcidid><orcidid>https://orcid.org/0000-0002-1074-3815</orcidid></search><sort><creationdate>20200828</creationdate><title>Scaling Laws for Regional Stratification at the Top of Earth's Core</title><author>Mound, Jonathan E. ; Davies, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3674-229dcd3df5a5d4fe06f022e0a43ee77f46894af2325256fc28a13196ec0a64d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brunt-Vaisala frequency</topic><topic>Cellular convection</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>core stratification</topic><topic>Earth core</topic><topic>Earth mantle</topic><topic>Earth's outer core</topic><topic>fluid dynamics ‐ scaling laws</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>geodynamics</topic><topic>Geological time</topic><topic>Geomagnetic observations</topic><topic>Geomagnetism</topic><topic>Heat flow</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Heterogeneity</topic><topic>Lenses</topic><topic>Mantle convection</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Regional development</topic><topic>Scaling</topic><topic>Scaling laws</topic><topic>Stratification</topic><topic>Thermal convection</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mound, Jonathan E.</creatorcontrib><creatorcontrib>Davies, Christopher J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mound, Jonathan E.</au><au>Davies, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling Laws for Regional Stratification at the Top of Earth's Core</atitle><jtitle>Geophysical research letters</jtitle><date>2020-08-28</date><risdate>2020</risdate><volume>47</volume><issue>16</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Seismic and geomagnetic observations have been used to argue both for and against a global stratified layer at the top of Earth's outer core. Recently, we used numerical models of turbulent thermal convection to show that imposed lateral variations in core‐mantle boundary (CMB) heat flow can give rise to regional lenses of stratified fluid at the top of the core while the bulk of the core remains actively convecting. Here, we develop theoretical scaling laws to extrapolate the properties of regional stratified lenses measured in simulations to the conditions of Earth's core. We estimate that regional stratified lenses in Earth's core have thicknesses of up to a few hundred kilometres and Brunt‐Väisälä frequencies of hours, consistent with independent observational constraints. The location, thickness, and strength of the stratified regions would change over geological time scales in response to the slowly evolving CMB heat flux heterogeneity imposed by mantle convection.
Key Points
CMB heat flux heterogeneity results in regional lenses of stratified fluid at the top of the core
We develop scaling laws for the strength and thickness of these lenses
Extrapolations to Earth‐like conditions predict lenses a few hundred kilometres thick</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2020GL087715</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1243-6915</orcidid><orcidid>https://orcid.org/0000-0002-1074-3815</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2020-08, Vol.47 (16), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_2437260492 |
source | Wiley Journals; Wiley Online Library Free Content; Wiley Online Library AGU Free Content; EZB-FREE-00999 freely available EZB journals |
subjects | Brunt-Vaisala frequency Cellular convection Computational fluid dynamics Computer simulation Convection core stratification Earth core Earth mantle Earth's outer core fluid dynamics ‐ scaling laws Fluid flow Free convection geodynamics Geological time Geomagnetic observations Geomagnetism Heat flow Heat flux Heat transfer Heat transmission Heterogeneity Lenses Mantle convection Mathematical models Numerical models Regional development Scaling Scaling laws Stratification Thermal convection Thickness |
title | Scaling Laws for Regional Stratification at the Top of Earth's Core |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20Laws%20for%20Regional%20Stratification%20at%20the%20Top%20of%20Earth's%20Core&rft.jtitle=Geophysical%20research%20letters&rft.au=Mound,%20Jonathan%20E.&rft.date=2020-08-28&rft.volume=47&rft.issue=16&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL087715&rft_dat=%3Cproquest_cross%3E2437260492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437260492&rft_id=info:pmid/&rfr_iscdi=true |