Drag force for a burning particle
Fully-resolved simulations of a burning char particle are performed to understand the effects of chemical reactions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2020-07, Vol.217, p.188-199 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | |
container_start_page | 188 |
container_title | Combustion and flame |
container_volume | 217 |
creator | Zhang, Hancong Luo, Kun Haugen, Nils Erland L. Mao, Chaoli Fan, Jianren |
description | Fully-resolved simulations of a burning char particle are performed to understand the effects of chemical reactions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction rates, temperatures and diameters are simulated and compared with a non-reactive adiabatic particle and a particle with an outflow. The results show that both the heterogeneous reactions and the gaseous reactions increase the drag force, which is converse to the effect observed for a non-reactive particle with a pure outflow. This difference indicates that the species and temperature distributions caused by the chemical reactions around the particle play an important role in shaping the drag force. To consider these effects, the Stefan flow Reynolds number and the non-dimensional gaseous reaction rate are introduced to formulate a new drag force correlation for a burning particle based on the fully-resolved simulations. Good performance of the correlation has been demonstrated in the current conditions, and more evaluation might be required for future work. |
doi_str_mv | 10.1016/j.combustflame.2020.02.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437187733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218020300791</els_id><sourcerecordid>2437187733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-f5fda95f582377a9d0f7b9dd99df2f7c808a4a8811a3c578e00da2457d0ff2203</originalsourceid><addsrcrecordid>eNqNUMlOwzAQtRBIlMI_BDgnjMdx7XBDLZtUiQucLcdL5Shtip0i8fe4CgeOXGYOb5k3j5AbChUFurjrKjNs20Mafa-3rkJAqACrDJ2QGeV8UWKD9JTMACiUSCWck4uUOgAQNWMzcr2KelP4IRp3nIUu2kPchd2m2Os4BtO7S3LmdZ_c1e-ek4-nx_flS7l-e35dPqxLU0M9lp57qxvuuUQmhG4seNE21jaN9eiFkSB1raWkVDPDhXQAVmPNRSZ6RGBzcjv57uPweXBpVN2Qo-STCmsmqBSCscy6n1gmDilF59U-hq2O34qCOlaiOvW3EnWsRAGqDGXxahK7_MdXcFElE9zOOBuiM6OyQ_iPzQ8ns29M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437187733</pqid></control><display><type>article</type><title>Drag force for a burning particle</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Hancong ; Luo, Kun ; Haugen, Nils Erland L. ; Mao, Chaoli ; Fan, Jianren</creator><creatorcontrib>Zhang, Hancong ; Luo, Kun ; Haugen, Nils Erland L. ; Mao, Chaoli ; Fan, Jianren</creatorcontrib><description>Fully-resolved simulations of a burning char particle are performed to understand the effects of chemical reactions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction rates, temperatures and diameters are simulated and compared with a non-reactive adiabatic particle and a particle with an outflow. The results show that both the heterogeneous reactions and the gaseous reactions increase the drag force, which is converse to the effect observed for a non-reactive particle with a pure outflow. This difference indicates that the species and temperature distributions caused by the chemical reactions around the particle play an important role in shaping the drag force. To consider these effects, the Stefan flow Reynolds number and the non-dimensional gaseous reaction rate are introduced to formulate a new drag force correlation for a burning particle based on the fully-resolved simulations. Good performance of the correlation has been demonstrated in the current conditions, and more evaluation might be required for future work.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2020.02.016</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Char particle ; Chemical reactions ; Coal combustion ; Computational fluid dynamics ; Diameters ; Drag ; Drag force ; Fluid flow ; Immersed boundary method ; Outflow ; Particle-resolved simulation ; Reynolds number ; Simulation</subject><ispartof>Combustion and flame, 2020-07, Vol.217, p.188-199</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-f5fda95f582377a9d0f7b9dd99df2f7c808a4a8811a3c578e00da2457d0ff2203</citedby><cites>FETCH-LOGICAL-c404t-f5fda95f582377a9d0f7b9dd99df2f7c808a4a8811a3c578e00da2457d0ff2203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2020.02.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Zhang, Hancong</creatorcontrib><creatorcontrib>Luo, Kun</creatorcontrib><creatorcontrib>Haugen, Nils Erland L.</creatorcontrib><creatorcontrib>Mao, Chaoli</creatorcontrib><creatorcontrib>Fan, Jianren</creatorcontrib><title>Drag force for a burning particle</title><title>Combustion and flame</title><description>Fully-resolved simulations of a burning char particle are performed to understand the effects of chemical reactions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction rates, temperatures and diameters are simulated and compared with a non-reactive adiabatic particle and a particle with an outflow. The results show that both the heterogeneous reactions and the gaseous reactions increase the drag force, which is converse to the effect observed for a non-reactive particle with a pure outflow. This difference indicates that the species and temperature distributions caused by the chemical reactions around the particle play an important role in shaping the drag force. To consider these effects, the Stefan flow Reynolds number and the non-dimensional gaseous reaction rate are introduced to formulate a new drag force correlation for a burning particle based on the fully-resolved simulations. Good performance of the correlation has been demonstrated in the current conditions, and more evaluation might be required for future work.</description><subject>Char particle</subject><subject>Chemical reactions</subject><subject>Coal combustion</subject><subject>Computational fluid dynamics</subject><subject>Diameters</subject><subject>Drag</subject><subject>Drag force</subject><subject>Fluid flow</subject><subject>Immersed boundary method</subject><subject>Outflow</subject><subject>Particle-resolved simulation</subject><subject>Reynolds number</subject><subject>Simulation</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNUMlOwzAQtRBIlMI_BDgnjMdx7XBDLZtUiQucLcdL5Shtip0i8fe4CgeOXGYOb5k3j5AbChUFurjrKjNs20Mafa-3rkJAqACrDJ2QGeV8UWKD9JTMACiUSCWck4uUOgAQNWMzcr2KelP4IRp3nIUu2kPchd2m2Os4BtO7S3LmdZ_c1e-ek4-nx_flS7l-e35dPqxLU0M9lp57qxvuuUQmhG4seNE21jaN9eiFkSB1raWkVDPDhXQAVmPNRSZ6RGBzcjv57uPweXBpVN2Qo-STCmsmqBSCscy6n1gmDilF59U-hq2O34qCOlaiOvW3EnWsRAGqDGXxahK7_MdXcFElE9zOOBuiM6OyQ_iPzQ8ns29M</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Zhang, Hancong</creator><creator>Luo, Kun</creator><creator>Haugen, Nils Erland L.</creator><creator>Mao, Chaoli</creator><creator>Fan, Jianren</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202007</creationdate><title>Drag force for a burning particle</title><author>Zhang, Hancong ; Luo, Kun ; Haugen, Nils Erland L. ; Mao, Chaoli ; Fan, Jianren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-f5fda95f582377a9d0f7b9dd99df2f7c808a4a8811a3c578e00da2457d0ff2203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Char particle</topic><topic>Chemical reactions</topic><topic>Coal combustion</topic><topic>Computational fluid dynamics</topic><topic>Diameters</topic><topic>Drag</topic><topic>Drag force</topic><topic>Fluid flow</topic><topic>Immersed boundary method</topic><topic>Outflow</topic><topic>Particle-resolved simulation</topic><topic>Reynolds number</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hancong</creatorcontrib><creatorcontrib>Luo, Kun</creatorcontrib><creatorcontrib>Haugen, Nils Erland L.</creatorcontrib><creatorcontrib>Mao, Chaoli</creatorcontrib><creatorcontrib>Fan, Jianren</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hancong</au><au>Luo, Kun</au><au>Haugen, Nils Erland L.</au><au>Mao, Chaoli</au><au>Fan, Jianren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drag force for a burning particle</atitle><jtitle>Combustion and flame</jtitle><date>2020-07</date><risdate>2020</risdate><volume>217</volume><spage>188</spage><epage>199</epage><pages>188-199</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Fully-resolved simulations of a burning char particle are performed to understand the effects of chemical reactions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction rates, temperatures and diameters are simulated and compared with a non-reactive adiabatic particle and a particle with an outflow. The results show that both the heterogeneous reactions and the gaseous reactions increase the drag force, which is converse to the effect observed for a non-reactive particle with a pure outflow. This difference indicates that the species and temperature distributions caused by the chemical reactions around the particle play an important role in shaping the drag force. To consider these effects, the Stefan flow Reynolds number and the non-dimensional gaseous reaction rate are introduced to formulate a new drag force correlation for a burning particle based on the fully-resolved simulations. Good performance of the correlation has been demonstrated in the current conditions, and more evaluation might be required for future work.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2020.02.016</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2020-07, Vol.217, p.188-199 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_journals_2437187733 |
source | Elsevier ScienceDirect Journals |
subjects | Char particle Chemical reactions Coal combustion Computational fluid dynamics Diameters Drag Drag force Fluid flow Immersed boundary method Outflow Particle-resolved simulation Reynolds number Simulation |
title | Drag force for a burning particle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drag%20force%20for%20a%20burning%20particle&rft.jtitle=Combustion%20and%20flame&rft.au=Zhang,%20Hancong&rft.date=2020-07&rft.volume=217&rft.spage=188&rft.epage=199&rft.pages=188-199&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2020.02.016&rft_dat=%3Cproquest_cross%3E2437187733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437187733&rft_id=info:pmid/&rft_els_id=S0010218020300791&rfr_iscdi=true |