Drag force for a burning particle

Fully-resolved simulations of a burning char particle are performed to understand the effects of chemical reactions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2020-07, Vol.217, p.188-199
Hauptverfasser: Zhang, Hancong, Luo, Kun, Haugen, Nils Erland L., Mao, Chaoli, Fan, Jianren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue
container_start_page 188
container_title Combustion and flame
container_volume 217
creator Zhang, Hancong
Luo, Kun
Haugen, Nils Erland L.
Mao, Chaoli
Fan, Jianren
description Fully-resolved simulations of a burning char particle are performed to understand the effects of chemical reactions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction rates, temperatures and diameters are simulated and compared with a non-reactive adiabatic particle and a particle with an outflow. The results show that both the heterogeneous reactions and the gaseous reactions increase the drag force, which is converse to the effect observed for a non-reactive particle with a pure outflow. This difference indicates that the species and temperature distributions caused by the chemical reactions around the particle play an important role in shaping the drag force. To consider these effects, the Stefan flow Reynolds number and the non-dimensional gaseous reaction rate are introduced to formulate a new drag force correlation for a burning particle based on the fully-resolved simulations. Good performance of the correlation has been demonstrated in the current conditions, and more evaluation might be required for future work.
doi_str_mv 10.1016/j.combustflame.2020.02.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437187733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218020300791</els_id><sourcerecordid>2437187733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-f5fda95f582377a9d0f7b9dd99df2f7c808a4a8811a3c578e00da2457d0ff2203</originalsourceid><addsrcrecordid>eNqNUMlOwzAQtRBIlMI_BDgnjMdx7XBDLZtUiQucLcdL5Shtip0i8fe4CgeOXGYOb5k3j5AbChUFurjrKjNs20Mafa-3rkJAqACrDJ2QGeV8UWKD9JTMACiUSCWck4uUOgAQNWMzcr2KelP4IRp3nIUu2kPchd2m2Os4BtO7S3LmdZ_c1e-ek4-nx_flS7l-e35dPqxLU0M9lp57qxvuuUQmhG4seNE21jaN9eiFkSB1raWkVDPDhXQAVmPNRSZ6RGBzcjv57uPweXBpVN2Qo-STCmsmqBSCscy6n1gmDilF59U-hq2O34qCOlaiOvW3EnWsRAGqDGXxahK7_MdXcFElE9zOOBuiM6OyQ_iPzQ8ns29M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437187733</pqid></control><display><type>article</type><title>Drag force for a burning particle</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Hancong ; Luo, Kun ; Haugen, Nils Erland L. ; Mao, Chaoli ; Fan, Jianren</creator><creatorcontrib>Zhang, Hancong ; Luo, Kun ; Haugen, Nils Erland L. ; Mao, Chaoli ; Fan, Jianren</creatorcontrib><description>Fully-resolved simulations of a burning char particle are performed to understand the effects of chemical reactions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction rates, temperatures and diameters are simulated and compared with a non-reactive adiabatic particle and a particle with an outflow. The results show that both the heterogeneous reactions and the gaseous reactions increase the drag force, which is converse to the effect observed for a non-reactive particle with a pure outflow. This difference indicates that the species and temperature distributions caused by the chemical reactions around the particle play an important role in shaping the drag force. To consider these effects, the Stefan flow Reynolds number and the non-dimensional gaseous reaction rate are introduced to formulate a new drag force correlation for a burning particle based on the fully-resolved simulations. Good performance of the correlation has been demonstrated in the current conditions, and more evaluation might be required for future work.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2020.02.016</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Char particle ; Chemical reactions ; Coal combustion ; Computational fluid dynamics ; Diameters ; Drag ; Drag force ; Fluid flow ; Immersed boundary method ; Outflow ; Particle-resolved simulation ; Reynolds number ; Simulation</subject><ispartof>Combustion and flame, 2020-07, Vol.217, p.188-199</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-f5fda95f582377a9d0f7b9dd99df2f7c808a4a8811a3c578e00da2457d0ff2203</citedby><cites>FETCH-LOGICAL-c404t-f5fda95f582377a9d0f7b9dd99df2f7c808a4a8811a3c578e00da2457d0ff2203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2020.02.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Zhang, Hancong</creatorcontrib><creatorcontrib>Luo, Kun</creatorcontrib><creatorcontrib>Haugen, Nils Erland L.</creatorcontrib><creatorcontrib>Mao, Chaoli</creatorcontrib><creatorcontrib>Fan, Jianren</creatorcontrib><title>Drag force for a burning particle</title><title>Combustion and flame</title><description>Fully-resolved simulations of a burning char particle are performed to understand the effects of chemical reactions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction rates, temperatures and diameters are simulated and compared with a non-reactive adiabatic particle and a particle with an outflow. The results show that both the heterogeneous reactions and the gaseous reactions increase the drag force, which is converse to the effect observed for a non-reactive particle with a pure outflow. This difference indicates that the species and temperature distributions caused by the chemical reactions around the particle play an important role in shaping the drag force. To consider these effects, the Stefan flow Reynolds number and the non-dimensional gaseous reaction rate are introduced to formulate a new drag force correlation for a burning particle based on the fully-resolved simulations. Good performance of the correlation has been demonstrated in the current conditions, and more evaluation might be required for future work.</description><subject>Char particle</subject><subject>Chemical reactions</subject><subject>Coal combustion</subject><subject>Computational fluid dynamics</subject><subject>Diameters</subject><subject>Drag</subject><subject>Drag force</subject><subject>Fluid flow</subject><subject>Immersed boundary method</subject><subject>Outflow</subject><subject>Particle-resolved simulation</subject><subject>Reynolds number</subject><subject>Simulation</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNUMlOwzAQtRBIlMI_BDgnjMdx7XBDLZtUiQucLcdL5Shtip0i8fe4CgeOXGYOb5k3j5AbChUFurjrKjNs20Mafa-3rkJAqACrDJ2QGeV8UWKD9JTMACiUSCWck4uUOgAQNWMzcr2KelP4IRp3nIUu2kPchd2m2Os4BtO7S3LmdZ_c1e-ek4-nx_flS7l-e35dPqxLU0M9lp57qxvuuUQmhG4seNE21jaN9eiFkSB1raWkVDPDhXQAVmPNRSZ6RGBzcjv57uPweXBpVN2Qo-STCmsmqBSCscy6n1gmDilF59U-hq2O34qCOlaiOvW3EnWsRAGqDGXxahK7_MdXcFElE9zOOBuiM6OyQ_iPzQ8ns29M</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Zhang, Hancong</creator><creator>Luo, Kun</creator><creator>Haugen, Nils Erland L.</creator><creator>Mao, Chaoli</creator><creator>Fan, Jianren</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202007</creationdate><title>Drag force for a burning particle</title><author>Zhang, Hancong ; Luo, Kun ; Haugen, Nils Erland L. ; Mao, Chaoli ; Fan, Jianren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-f5fda95f582377a9d0f7b9dd99df2f7c808a4a8811a3c578e00da2457d0ff2203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Char particle</topic><topic>Chemical reactions</topic><topic>Coal combustion</topic><topic>Computational fluid dynamics</topic><topic>Diameters</topic><topic>Drag</topic><topic>Drag force</topic><topic>Fluid flow</topic><topic>Immersed boundary method</topic><topic>Outflow</topic><topic>Particle-resolved simulation</topic><topic>Reynolds number</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hancong</creatorcontrib><creatorcontrib>Luo, Kun</creatorcontrib><creatorcontrib>Haugen, Nils Erland L.</creatorcontrib><creatorcontrib>Mao, Chaoli</creatorcontrib><creatorcontrib>Fan, Jianren</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hancong</au><au>Luo, Kun</au><au>Haugen, Nils Erland L.</au><au>Mao, Chaoli</au><au>Fan, Jianren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drag force for a burning particle</atitle><jtitle>Combustion and flame</jtitle><date>2020-07</date><risdate>2020</risdate><volume>217</volume><spage>188</spage><epage>199</epage><pages>188-199</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Fully-resolved simulations of a burning char particle are performed to understand the effects of chemical reactions on the drag force by using the ghost cell immersed boundary method. The momentum, heat and mass transfers at the interface are all considered. Reactive particle with different reaction rates, temperatures and diameters are simulated and compared with a non-reactive adiabatic particle and a particle with an outflow. The results show that both the heterogeneous reactions and the gaseous reactions increase the drag force, which is converse to the effect observed for a non-reactive particle with a pure outflow. This difference indicates that the species and temperature distributions caused by the chemical reactions around the particle play an important role in shaping the drag force. To consider these effects, the Stefan flow Reynolds number and the non-dimensional gaseous reaction rate are introduced to formulate a new drag force correlation for a burning particle based on the fully-resolved simulations. Good performance of the correlation has been demonstrated in the current conditions, and more evaluation might be required for future work.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2020.02.016</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2020-07, Vol.217, p.188-199
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_2437187733
source Elsevier ScienceDirect Journals
subjects Char particle
Chemical reactions
Coal combustion
Computational fluid dynamics
Diameters
Drag
Drag force
Fluid flow
Immersed boundary method
Outflow
Particle-resolved simulation
Reynolds number
Simulation
title Drag force for a burning particle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drag%20force%20for%20a%20burning%20particle&rft.jtitle=Combustion%20and%20flame&rft.au=Zhang,%20Hancong&rft.date=2020-07&rft.volume=217&rft.spage=188&rft.epage=199&rft.pages=188-199&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2020.02.016&rft_dat=%3Cproquest_cross%3E2437187733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437187733&rft_id=info:pmid/&rft_els_id=S0010218020300791&rfr_iscdi=true