Intelligent Indexing—Boosting Performance in Database Applications by Recognizing Index Patterns
An issue that most databases face is the static and manual character of indexing operations. This old-fashioned way of indexing database objects is proven to affect the database performance to some degree, creating downtime and a possible impact in the performance that is usually solved by manually...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2020-09, Vol.9 (9), p.1348 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1348 |
container_title | Electronics (Basel) |
container_volume | 9 |
creator | Arteta Albert, Alberto Gómez Blas, Nuria Mingo López, Luis Fernando de |
description | An issue that most databases face is the static and manual character of indexing operations. This old-fashioned way of indexing database objects is proven to affect the database performance to some degree, creating downtime and a possible impact in the performance that is usually solved by manually running index rebuild or defrag operations. Many data mining algorithms can speed up by using appropriate index structures. Choosing the proper index largely depends on the type of query that the algorithm performs against the database. The statistical analyzers embedded in the Database Management System are neither always accurate enough to automatically determine when to use an index nor to change its inner structure. This paper provides an algorithm that targets those indexes that are causing performance issues on the databases and then performs an automatic operation (defrag, recreation, or modification) that can boost the overall performance of the Database System. The effectiveness of proposed algorithm has been evaluated with several experiments developed and show that this approach consistently leads to a better resulting index configuration. The downtime of having a damaged, fragmented, or inefficient index is reduced by increasing the chances for the optimizer to be using the proper index structure. |
doi_str_mv | 10.3390/electronics9091348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436987016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436987016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7731593436f5458b991d886a2d84b60fe82821c847d0120fb753d087bf6ba1f63</originalsourceid><addsrcrecordid>eNplkMtKAzEUhoMoWGpfwFXA9WguM5NkWeutULCIrockk5SUaTImKVhXPoRP6JM4tS4Ez-b8i-98B34AzjG6pFSgK9MZnWPwTieBBKYlPwIjgpgoBBHk-E8-BZOU1miYAeMUjYCa-2y6zq2Mz3DuW_Pm_Orr4_M6hJSHCJcm2hA30msDnYc3Mkslk4HTvu-cltkFn6DawSejw8q79_3NjwcuZc4m-nQGTqzskpn87jF4ubt9nj0Ui8f7-Wy6KDRhKBeMUVwJWtLaVmXFlRC45byWpOWlqpE1nHCCNS9ZizBBVrGKtogzZWslsa3pGFwcvH0Mr1uTcrMO2-iHlw0ZrIIzhPcUOVA6hpSisU0f3UbGXYNRs6-z-V8n_QYU-Gy6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436987016</pqid></control><display><type>article</type><title>Intelligent Indexing—Boosting Performance in Database Applications by Recognizing Index Patterns</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Arteta Albert, Alberto ; Gómez Blas, Nuria ; Mingo López, Luis Fernando de</creator><creatorcontrib>Arteta Albert, Alberto ; Gómez Blas, Nuria ; Mingo López, Luis Fernando de</creatorcontrib><description>An issue that most databases face is the static and manual character of indexing operations. This old-fashioned way of indexing database objects is proven to affect the database performance to some degree, creating downtime and a possible impact in the performance that is usually solved by manually running index rebuild or defrag operations. Many data mining algorithms can speed up by using appropriate index structures. Choosing the proper index largely depends on the type of query that the algorithm performs against the database. The statistical analyzers embedded in the Database Management System are neither always accurate enough to automatically determine when to use an index nor to change its inner structure. This paper provides an algorithm that targets those indexes that are causing performance issues on the databases and then performs an automatic operation (defrag, recreation, or modification) that can boost the overall performance of the Database System. The effectiveness of proposed algorithm has been evaluated with several experiments developed and show that this approach consistently leads to a better resulting index configuration. The downtime of having a damaged, fragmented, or inefficient index is reduced by increasing the chances for the optimizer to be using the proper index structure.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9091348</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analyzers ; Data base management systems ; Data mining ; Downtime ; Face recognition ; Indexing ; Pattern recognition ; Performance indices ; Queries ; Relational data bases ; Software</subject><ispartof>Electronics (Basel), 2020-09, Vol.9 (9), p.1348</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7731593436f5458b991d886a2d84b60fe82821c847d0120fb753d087bf6ba1f63</cites><orcidid>0000-0002-9249-6722 ; 0000-0001-5065-3745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Arteta Albert, Alberto</creatorcontrib><creatorcontrib>Gómez Blas, Nuria</creatorcontrib><creatorcontrib>Mingo López, Luis Fernando de</creatorcontrib><title>Intelligent Indexing—Boosting Performance in Database Applications by Recognizing Index Patterns</title><title>Electronics (Basel)</title><description>An issue that most databases face is the static and manual character of indexing operations. This old-fashioned way of indexing database objects is proven to affect the database performance to some degree, creating downtime and a possible impact in the performance that is usually solved by manually running index rebuild or defrag operations. Many data mining algorithms can speed up by using appropriate index structures. Choosing the proper index largely depends on the type of query that the algorithm performs against the database. The statistical analyzers embedded in the Database Management System are neither always accurate enough to automatically determine when to use an index nor to change its inner structure. This paper provides an algorithm that targets those indexes that are causing performance issues on the databases and then performs an automatic operation (defrag, recreation, or modification) that can boost the overall performance of the Database System. The effectiveness of proposed algorithm has been evaluated with several experiments developed and show that this approach consistently leads to a better resulting index configuration. The downtime of having a damaged, fragmented, or inefficient index is reduced by increasing the chances for the optimizer to be using the proper index structure.</description><subject>Algorithms</subject><subject>Analyzers</subject><subject>Data base management systems</subject><subject>Data mining</subject><subject>Downtime</subject><subject>Face recognition</subject><subject>Indexing</subject><subject>Pattern recognition</subject><subject>Performance indices</subject><subject>Queries</subject><subject>Relational data bases</subject><subject>Software</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkMtKAzEUhoMoWGpfwFXA9WguM5NkWeutULCIrockk5SUaTImKVhXPoRP6JM4tS4Ez-b8i-98B34AzjG6pFSgK9MZnWPwTieBBKYlPwIjgpgoBBHk-E8-BZOU1miYAeMUjYCa-2y6zq2Mz3DuW_Pm_Orr4_M6hJSHCJcm2hA30msDnYc3Mkslk4HTvu-cltkFn6DawSejw8q79_3NjwcuZc4m-nQGTqzskpn87jF4ubt9nj0Ui8f7-Wy6KDRhKBeMUVwJWtLaVmXFlRC45byWpOWlqpE1nHCCNS9ZizBBVrGKtogzZWslsa3pGFwcvH0Mr1uTcrMO2-iHlw0ZrIIzhPcUOVA6hpSisU0f3UbGXYNRs6-z-V8n_QYU-Gy6</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Arteta Albert, Alberto</creator><creator>Gómez Blas, Nuria</creator><creator>Mingo López, Luis Fernando de</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9249-6722</orcidid><orcidid>https://orcid.org/0000-0001-5065-3745</orcidid></search><sort><creationdate>20200901</creationdate><title>Intelligent Indexing—Boosting Performance in Database Applications by Recognizing Index Patterns</title><author>Arteta Albert, Alberto ; Gómez Blas, Nuria ; Mingo López, Luis Fernando de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7731593436f5458b991d886a2d84b60fe82821c847d0120fb753d087bf6ba1f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analyzers</topic><topic>Data base management systems</topic><topic>Data mining</topic><topic>Downtime</topic><topic>Face recognition</topic><topic>Indexing</topic><topic>Pattern recognition</topic><topic>Performance indices</topic><topic>Queries</topic><topic>Relational data bases</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arteta Albert, Alberto</creatorcontrib><creatorcontrib>Gómez Blas, Nuria</creatorcontrib><creatorcontrib>Mingo López, Luis Fernando de</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arteta Albert, Alberto</au><au>Gómez Blas, Nuria</au><au>Mingo López, Luis Fernando de</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Indexing—Boosting Performance in Database Applications by Recognizing Index Patterns</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>9</volume><issue>9</issue><spage>1348</spage><pages>1348-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>An issue that most databases face is the static and manual character of indexing operations. This old-fashioned way of indexing database objects is proven to affect the database performance to some degree, creating downtime and a possible impact in the performance that is usually solved by manually running index rebuild or defrag operations. Many data mining algorithms can speed up by using appropriate index structures. Choosing the proper index largely depends on the type of query that the algorithm performs against the database. The statistical analyzers embedded in the Database Management System are neither always accurate enough to automatically determine when to use an index nor to change its inner structure. This paper provides an algorithm that targets those indexes that are causing performance issues on the databases and then performs an automatic operation (defrag, recreation, or modification) that can boost the overall performance of the Database System. The effectiveness of proposed algorithm has been evaluated with several experiments developed and show that this approach consistently leads to a better resulting index configuration. The downtime of having a damaged, fragmented, or inefficient index is reduced by increasing the chances for the optimizer to be using the proper index structure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9091348</doi><orcidid>https://orcid.org/0000-0002-9249-6722</orcidid><orcidid>https://orcid.org/0000-0001-5065-3745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2020-09, Vol.9 (9), p.1348 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2436987016 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Analyzers Data base management systems Data mining Downtime Face recognition Indexing Pattern recognition Performance indices Queries Relational data bases Software |
title | Intelligent Indexing—Boosting Performance in Database Applications by Recognizing Index Patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Indexing%E2%80%94Boosting%20Performance%20in%20Database%20Applications%20by%20Recognizing%20Index%20Patterns&rft.jtitle=Electronics%20(Basel)&rft.au=Arteta%20Albert,%20Alberto&rft.date=2020-09-01&rft.volume=9&rft.issue=9&rft.spage=1348&rft.pages=1348-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9091348&rft_dat=%3Cproquest_cross%3E2436987016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436987016&rft_id=info:pmid/&rfr_iscdi=true |