Automatic, location-privacy preserving dashcam video sharing using blockchain and deep learning

Today, many people use dashcams, and videos recorded on dashcams are often used as evidence of accident fault. People can upload videos of dashcam recordings with specific accident clips and share the videos with others who request them, by providing the time or location of an accident. However, das...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human-centric Computing and Information Sciences 2020-08, Vol.10 (1), Article 36
Hauptverfasser: Kim, Taehyoung, Jung, Im Y., Hu, Yih-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Human-centric Computing and Information Sciences
container_volume 10
creator Kim, Taehyoung
Jung, Im Y.
Hu, Yih-Chun
description Today, many people use dashcams, and videos recorded on dashcams are often used as evidence of accident fault. People can upload videos of dashcam recordings with specific accident clips and share the videos with others who request them, by providing the time or location of an accident. However, dashcam videos are erased when the dashcam memory is full, so periodic backup is necessary for video sharing. It is inconvenient for dashcam owners to search for and transmit a requested video clip from backup videos. In addition, anonymity is not ensured, which may reduce location privacy by exposing the video owner’s location. To solve this problem, we propose a video sharing scheme with accident detection using deep learning coupled with automatic transfer to the cloud; we also propose ensuring data and operational integrity along with location privacy by using blockchain smart contracts. Furthermore, our proposed system uses proxy re-encryption to enhance the confidentiality of a shared video. Our experiments show that our proposed automatic video sharing system is cost-effective enough to be acceptable for deployment.
doi_str_mv 10.1186/s13673-020-00244-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2436976059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633569637</galeid><sourcerecordid>A633569637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-69597c11339bdf62a22e50c944577bc57d23c2b50943c7e7ddf2e395dfb80a093</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIsouKz7BzwVvNo1jyZpjsviCwQveg5pku5mbZOatAv7702toCcJTIaZ-TLhy7JrCNYQVvQuQkwZLgACBQCoLIvqLFsgyFEBOUXnf_LLbBXjAQAAAUOE4UUmNuPgOzlYdZu3XqXEu6IP9ijVKe-DiSYcrdvlWsa9kl1-tNr4PO5lmKpjnGKdwA-1l9bl0ulcG9PnrZHBpeZVdtHINprVz73M3h_u37ZPxcvr4_N281KoEtOhoJxwpiDEmNe6oUgiZAhQvCwJY7UiTCOsUE0AL7FihmndIIM50U1dAQk4XmY387t98J-jiYM4-DG4tFKgtIEzCsg0tZ6ndrI1wrrGD0GqdLTprPLONDbVNxRjQjnFLAFoBlTwMQbTiOSmk-EkIBCTfDHLF0m--JYvqgThGYr9ZMmE37_8Q30BhniHNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436976059</pqid></control><display><type>article</type><title>Automatic, location-privacy preserving dashcam video sharing using blockchain and deep learning</title><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Taehyoung ; Jung, Im Y. ; Hu, Yih-Chun</creator><creatorcontrib>Kim, Taehyoung ; Jung, Im Y. ; Hu, Yih-Chun</creatorcontrib><description>Today, many people use dashcams, and videos recorded on dashcams are often used as evidence of accident fault. People can upload videos of dashcam recordings with specific accident clips and share the videos with others who request them, by providing the time or location of an accident. However, dashcam videos are erased when the dashcam memory is full, so periodic backup is necessary for video sharing. It is inconvenient for dashcam owners to search for and transmit a requested video clip from backup videos. In addition, anonymity is not ensured, which may reduce location privacy by exposing the video owner’s location. To solve this problem, we propose a video sharing scheme with accident detection using deep learning coupled with automatic transfer to the cloud; we also propose ensuring data and operational integrity along with location privacy by using blockchain smart contracts. Furthermore, our proposed system uses proxy re-encryption to enhance the confidentiality of a shared video. Our experiments show that our proposed automatic video sharing system is cost-effective enough to be acceptable for deployment.</description><identifier>ISSN: 2192-1962</identifier><identifier>EISSN: 2192-1962</identifier><identifier>DOI: 10.1186/s13673-020-00244-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accident detection ; Artificial Intelligence ; Blockchain ; Cable television broadcasting industry ; Communications Engineering ; Computer Science ; Computer Systems Organization and Communication Networks ; Cryptography ; Deep learning ; Encryption ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; Machine learning ; Networks ; Privacy ; User Interfaces and Human Computer Interaction ; Video transmission</subject><ispartof>Human-centric Computing and Information Sciences, 2020-08, Vol.10 (1), Article 36</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-69597c11339bdf62a22e50c944577bc57d23c2b50943c7e7ddf2e395dfb80a093</citedby><cites>FETCH-LOGICAL-c436t-69597c11339bdf62a22e50c944577bc57d23c2b50943c7e7ddf2e395dfb80a093</cites><orcidid>0000-0002-9713-1757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s13673-020-00244-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1186/s13673-020-00244-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Kim, Taehyoung</creatorcontrib><creatorcontrib>Jung, Im Y.</creatorcontrib><creatorcontrib>Hu, Yih-Chun</creatorcontrib><title>Automatic, location-privacy preserving dashcam video sharing using blockchain and deep learning</title><title>Human-centric Computing and Information Sciences</title><addtitle>Hum. Cent. Comput. Inf. Sci</addtitle><description>Today, many people use dashcams, and videos recorded on dashcams are often used as evidence of accident fault. People can upload videos of dashcam recordings with specific accident clips and share the videos with others who request them, by providing the time or location of an accident. However, dashcam videos are erased when the dashcam memory is full, so periodic backup is necessary for video sharing. It is inconvenient for dashcam owners to search for and transmit a requested video clip from backup videos. In addition, anonymity is not ensured, which may reduce location privacy by exposing the video owner’s location. To solve this problem, we propose a video sharing scheme with accident detection using deep learning coupled with automatic transfer to the cloud; we also propose ensuring data and operational integrity along with location privacy by using blockchain smart contracts. Furthermore, our proposed system uses proxy re-encryption to enhance the confidentiality of a shared video. Our experiments show that our proposed automatic video sharing system is cost-effective enough to be acceptable for deployment.</description><subject>Accident detection</subject><subject>Artificial Intelligence</subject><subject>Blockchain</subject><subject>Cable television broadcasting industry</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Cryptography</subject><subject>Deep learning</subject><subject>Encryption</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Machine learning</subject><subject>Networks</subject><subject>Privacy</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Video transmission</subject><issn>2192-1962</issn><issn>2192-1962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAQgIsouKz7BzwVvNo1jyZpjsviCwQveg5pku5mbZOatAv7702toCcJTIaZ-TLhy7JrCNYQVvQuQkwZLgACBQCoLIvqLFsgyFEBOUXnf_LLbBXjAQAAAUOE4UUmNuPgOzlYdZu3XqXEu6IP9ijVKe-DiSYcrdvlWsa9kl1-tNr4PO5lmKpjnGKdwA-1l9bl0ulcG9PnrZHBpeZVdtHINprVz73M3h_u37ZPxcvr4_N281KoEtOhoJxwpiDEmNe6oUgiZAhQvCwJY7UiTCOsUE0AL7FihmndIIM50U1dAQk4XmY387t98J-jiYM4-DG4tFKgtIEzCsg0tZ6ndrI1wrrGD0GqdLTprPLONDbVNxRjQjnFLAFoBlTwMQbTiOSmk-EkIBCTfDHLF0m--JYvqgThGYr9ZMmE37_8Q30BhniHNg</recordid><startdate>20200826</startdate><enddate>20200826</enddate><creator>Kim, Taehyoung</creator><creator>Jung, Im Y.</creator><creator>Hu, Yih-Chun</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Korea Information Processing Society, Computer Software Research Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9713-1757</orcidid></search><sort><creationdate>20200826</creationdate><title>Automatic, location-privacy preserving dashcam video sharing using blockchain and deep learning</title><author>Kim, Taehyoung ; Jung, Im Y. ; Hu, Yih-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-69597c11339bdf62a22e50c944577bc57d23c2b50943c7e7ddf2e395dfb80a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accident detection</topic><topic>Artificial Intelligence</topic><topic>Blockchain</topic><topic>Cable television broadcasting industry</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Cryptography</topic><topic>Deep learning</topic><topic>Encryption</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Machine learning</topic><topic>Networks</topic><topic>Privacy</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Video transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Taehyoung</creatorcontrib><creatorcontrib>Jung, Im Y.</creatorcontrib><creatorcontrib>Hu, Yih-Chun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Human-centric Computing and Information Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Taehyoung</au><au>Jung, Im Y.</au><au>Hu, Yih-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic, location-privacy preserving dashcam video sharing using blockchain and deep learning</atitle><jtitle>Human-centric Computing and Information Sciences</jtitle><stitle>Hum. Cent. Comput. Inf. Sci</stitle><date>2020-08-26</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><artnum>36</artnum><issn>2192-1962</issn><eissn>2192-1962</eissn><abstract>Today, many people use dashcams, and videos recorded on dashcams are often used as evidence of accident fault. People can upload videos of dashcam recordings with specific accident clips and share the videos with others who request them, by providing the time or location of an accident. However, dashcam videos are erased when the dashcam memory is full, so periodic backup is necessary for video sharing. It is inconvenient for dashcam owners to search for and transmit a requested video clip from backup videos. In addition, anonymity is not ensured, which may reduce location privacy by exposing the video owner’s location. To solve this problem, we propose a video sharing scheme with accident detection using deep learning coupled with automatic transfer to the cloud; we also propose ensuring data and operational integrity along with location privacy by using blockchain smart contracts. Furthermore, our proposed system uses proxy re-encryption to enhance the confidentiality of a shared video. Our experiments show that our proposed automatic video sharing system is cost-effective enough to be acceptable for deployment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1186/s13673-020-00244-8</doi><orcidid>https://orcid.org/0000-0002-9713-1757</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-1962
ispartof Human-centric Computing and Information Sciences, 2020-08, Vol.10 (1), Article 36
issn 2192-1962
2192-1962
language eng
recordid cdi_proquest_journals_2436976059
source Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Accident detection
Artificial Intelligence
Blockchain
Cable television broadcasting industry
Communications Engineering
Computer Science
Computer Systems Organization and Communication Networks
Cryptography
Deep learning
Encryption
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
Machine learning
Networks
Privacy
User Interfaces and Human Computer Interaction
Video transmission
title Automatic, location-privacy preserving dashcam video sharing using blockchain and deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic,%20location-privacy%20preserving%20dashcam%20video%20sharing%20using%20blockchain%20and%20deep%20learning&rft.jtitle=Human-centric%20Computing%20and%20Information%20Sciences&rft.au=Kim,%20Taehyoung&rft.date=2020-08-26&rft.volume=10&rft.issue=1&rft.artnum=36&rft.issn=2192-1962&rft.eissn=2192-1962&rft_id=info:doi/10.1186/s13673-020-00244-8&rft_dat=%3Cgale_proqu%3EA633569637%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436976059&rft_id=info:pmid/&rft_galeid=A633569637&rfr_iscdi=true