Limit distribution of a time-dependent quantum walk on the half line

We focus on a two-period time-dependent quantum walk on the half line in this paper. The quantum walker launches at the edge of the half line in a localized superposition state, and its time evolution is carried out with two unitary operations which are alternately casted to the quantum walk. As a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2020-08, Vol.19 (9), Article 296
1. Verfasser: Machida, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Quantum information processing
container_volume 19
creator Machida, Takuya
description We focus on a two-period time-dependent quantum walk on the half line in this paper. The quantum walker launches at the edge of the half line in a localized superposition state, and its time evolution is carried out with two unitary operations which are alternately casted to the quantum walk. As a result, long-time limit finding probabilities of the quantum walk turn to be determined by either one of the two operations, but not both. More interestingly, the limit finding probabilities are independent from the localized initial state. We will approach the appreciated features via a quantum walk on the line which is able to reproduce the time-dependent walk on the half line.
doi_str_mv 10.1007/s11128-020-02802-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436893469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436893469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-49af088c72b8cb2a24a11c37e70fda520f7a16568273423aa3fc3c34808f72e53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7CbpUeonFLzoOaTZxKbuR5tkEf-9sSt48zDMwDzvDDwIXVK4pgDyJlFKmSLAoJQCRsQRmtFackI5Z8eHuaxkXZ-is5S2AIwKJWbobhW6kHETUo5hPeYw9Hjw2OAcOkcat3N94_qM96Pp89jhT9N-4MLkjcMb03rcht6doxNv2uQufvscvT3cvy6fyOrl8Xl5uyKWK8ikWhgPSlnJ1squmWGVodRy6ST4xtQMvDRU1EIxySvGjeHecssrBcpL5mo-R1fT3V0c9qNLWW-HMfblpWYVF2rBK7EoFJsoG4eUovN6F0Nn4pemoH9s6cmWLrb0wZYWJcSnUCpw_-7i3-l_Ut8urGua</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436893469</pqid></control><display><type>article</type><title>Limit distribution of a time-dependent quantum walk on the half line</title><source>SpringerLink Journals - AutoHoldings</source><creator>Machida, Takuya</creator><creatorcontrib>Machida, Takuya</creatorcontrib><description>We focus on a two-period time-dependent quantum walk on the half line in this paper. The quantum walker launches at the edge of the half line in a localized superposition state, and its time evolution is carried out with two unitary operations which are alternately casted to the quantum walk. As a result, long-time limit finding probabilities of the quantum walk turn to be determined by either one of the two operations, but not both. More interestingly, the limit finding probabilities are independent from the localized initial state. We will approach the appreciated features via a quantum walk on the line which is able to reproduce the time-dependent walk on the half line.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02802-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics ; Time dependence</subject><ispartof>Quantum information processing, 2020-08, Vol.19 (9), Article 296</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-49af088c72b8cb2a24a11c37e70fda520f7a16568273423aa3fc3c34808f72e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-020-02802-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-020-02802-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Machida, Takuya</creatorcontrib><title>Limit distribution of a time-dependent quantum walk on the half line</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>We focus on a two-period time-dependent quantum walk on the half line in this paper. The quantum walker launches at the edge of the half line in a localized superposition state, and its time evolution is carried out with two unitary operations which are alternately casted to the quantum walk. As a result, long-time limit finding probabilities of the quantum walk turn to be determined by either one of the two operations, but not both. More interestingly, the limit finding probabilities are independent from the localized initial state. We will approach the appreciated features via a quantum walk on the line which is able to reproduce the time-dependent walk on the half line.</description><subject>Data Structures and Information Theory</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><subject>Time dependence</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7CbpUeonFLzoOaTZxKbuR5tkEf-9sSt48zDMwDzvDDwIXVK4pgDyJlFKmSLAoJQCRsQRmtFackI5Z8eHuaxkXZ-is5S2AIwKJWbobhW6kHETUo5hPeYw9Hjw2OAcOkcat3N94_qM96Pp89jhT9N-4MLkjcMb03rcht6doxNv2uQufvscvT3cvy6fyOrl8Xl5uyKWK8ikWhgPSlnJ1squmWGVodRy6ST4xtQMvDRU1EIxySvGjeHecssrBcpL5mo-R1fT3V0c9qNLWW-HMfblpWYVF2rBK7EoFJsoG4eUovN6F0Nn4pemoH9s6cmWLrb0wZYWJcSnUCpw_-7i3-l_Ut8urGua</recordid><startdate>20200824</startdate><enddate>20200824</enddate><creator>Machida, Takuya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200824</creationdate><title>Limit distribution of a time-dependent quantum walk on the half line</title><author>Machida, Takuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-49af088c72b8cb2a24a11c37e70fda520f7a16568273423aa3fc3c34808f72e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data Structures and Information Theory</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machida, Takuya</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machida, Takuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit distribution of a time-dependent quantum walk on the half line</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020-08-24</date><risdate>2020</risdate><volume>19</volume><issue>9</issue><artnum>296</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>We focus on a two-period time-dependent quantum walk on the half line in this paper. The quantum walker launches at the edge of the half line in a localized superposition state, and its time evolution is carried out with two unitary operations which are alternately casted to the quantum walk. As a result, long-time limit finding probabilities of the quantum walk turn to be determined by either one of the two operations, but not both. More interestingly, the limit finding probabilities are independent from the localized initial state. We will approach the appreciated features via a quantum walk on the line which is able to reproduce the time-dependent walk on the half line.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02802-6</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2020-08, Vol.19 (9), Article 296
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2436893469
source SpringerLink Journals - AutoHoldings
subjects Data Structures and Information Theory
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
Time dependence
title Limit distribution of a time-dependent quantum walk on the half line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20distribution%20of%20a%20time-dependent%20quantum%20walk%20on%20the%20half%20line&rft.jtitle=Quantum%20information%20processing&rft.au=Machida,%20Takuya&rft.date=2020-08-24&rft.volume=19&rft.issue=9&rft.artnum=296&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02802-6&rft_dat=%3Cproquest_cross%3E2436893469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436893469&rft_id=info:pmid/&rfr_iscdi=true