Hidden Markov model technique for dynamic spectrum access
Keywords: Baum-Welch algorithm Cognitive radio network Dynamic spectrum access Hidden Markov process Markov chain ABSTRACT Dynamic spectrum access is a paradigm used to access the spectrum dynamically. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transi...
Gespeichert in:
Veröffentlicht in: | Telkomnika 2020-10, Vol.18 (5), p.2780-2786 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2786 |
---|---|
container_issue | 5 |
container_start_page | 2780 |
container_title | Telkomnika |
container_volume | 18 |
creator | Pawar, Jayant P V. Ingole, Prashant |
description | Keywords: Baum-Welch algorithm Cognitive radio network Dynamic spectrum access Hidden Markov process Markov chain ABSTRACT Dynamic spectrum access is a paradigm used to access the spectrum dynamically. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transition and emission matrix, and then we compare the estimated states prediction performance of both the methods using stationary distribution of average estimated transition matrix calculated by both the methods. 1.INTRODUCTION Spectrum sensing is usually done by measuring the power spectral density of the channel of interest in cognitive radio [1] based system to perform the dynamic spectrum access [2] operation. Estimation using maximum likelihood algorithm We also obtained the estimated transition probability and emission probability matrix by using the maximum likelihood (ML) estimate. Table 5 shows the average of estimated transition matrices for both the HMM i.e. HMM1 and HMM2 using maximum likelihood method along with its stationary distribution. |
doi_str_mv | 10.12928/telkomnika.v18i5.14470 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436887304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436887304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c146t-a42bfcf86413c6ef831bf868fd2774e6ed3a1db145667fc264c4f82e9240fabe3</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWGp_gwGft-a2uTxKUStUfNHnkE0muN3upibbQv-9Syt4YDgcOMwMH0L3lCwpM0w_jrDrUj-0nVseqW7rJRVCkSs0Y5ywyjDDr9GMSsOracgtWpSyJZMUYbXRM2TWbQgw4HeXu3TEfQqwwyP476H9OQCOKeNwGlzfelz24Md86LHzHkq5QzfR7Qos_nyOvl6eP1fravPx-rZ62lSeCjlWTrAm-qiloNxLiJrTZko6BqaUAAmBOxoaKmopVfRMCi-iZmCYINE1wOfo4bJ3n9P0UhntNh3yMJ20THCpteJETC11afmcSskQ7T63vcsnS4k9o7L_qOwZlT2j4r82E2CR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436887304</pqid></control><display><type>article</type><title>Hidden Markov model technique for dynamic spectrum access</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pawar, Jayant P ; V. Ingole, Prashant</creator><creatorcontrib>Pawar, Jayant P ; V. Ingole, Prashant</creatorcontrib><description>Keywords: Baum-Welch algorithm Cognitive radio network Dynamic spectrum access Hidden Markov process Markov chain ABSTRACT Dynamic spectrum access is a paradigm used to access the spectrum dynamically. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transition and emission matrix, and then we compare the estimated states prediction performance of both the methods using stationary distribution of average estimated transition matrix calculated by both the methods. 1.INTRODUCTION Spectrum sensing is usually done by measuring the power spectral density of the channel of interest in cognitive radio [1] based system to perform the dynamic spectrum access [2] operation. Estimation using maximum likelihood algorithm We also obtained the estimated transition probability and emission probability matrix by using the maximum likelihood (ML) estimate. Table 5 shows the average of estimated transition matrices for both the HMM i.e. HMM1 and HMM2 using maximum likelihood method along with its stationary distribution.</description><identifier>ISSN: 1693-6930</identifier><identifier>EISSN: 2302-9293</identifier><identifier>DOI: 10.12928/telkomnika.v18i5.14470</identifier><language>eng</language><publisher>Yogyakarta: Ahmad Dahlan University</publisher><subject>Algorithms ; Cognitive radio ; Eigenvalues ; Emission ; Markov analysis ; Markov chains ; Maximum likelihood estimates ; Maximum likelihood estimation ; Maximum likelihood method ; Parameter estimation ; Power spectral density ; Probability ; Random variables ; Transition probabilities</subject><ispartof>Telkomnika, 2020-10, Vol.18 (5), p.2780-2786</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pawar, Jayant P</creatorcontrib><creatorcontrib>V. Ingole, Prashant</creatorcontrib><title>Hidden Markov model technique for dynamic spectrum access</title><title>Telkomnika</title><description>Keywords: Baum-Welch algorithm Cognitive radio network Dynamic spectrum access Hidden Markov process Markov chain ABSTRACT Dynamic spectrum access is a paradigm used to access the spectrum dynamically. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transition and emission matrix, and then we compare the estimated states prediction performance of both the methods using stationary distribution of average estimated transition matrix calculated by both the methods. 1.INTRODUCTION Spectrum sensing is usually done by measuring the power spectral density of the channel of interest in cognitive radio [1] based system to perform the dynamic spectrum access [2] operation. Estimation using maximum likelihood algorithm We also obtained the estimated transition probability and emission probability matrix by using the maximum likelihood (ML) estimate. Table 5 shows the average of estimated transition matrices for both the HMM i.e. HMM1 and HMM2 using maximum likelihood method along with its stationary distribution.</description><subject>Algorithms</subject><subject>Cognitive radio</subject><subject>Eigenvalues</subject><subject>Emission</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Maximum likelihood estimates</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Parameter estimation</subject><subject>Power spectral density</subject><subject>Probability</subject><subject>Random variables</subject><subject>Transition probabilities</subject><issn>1693-6930</issn><issn>2302-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkFtLAzEQhYMoWGp_gwGft-a2uTxKUStUfNHnkE0muN3upibbQv-9Syt4YDgcOMwMH0L3lCwpM0w_jrDrUj-0nVseqW7rJRVCkSs0Y5ywyjDDr9GMSsOracgtWpSyJZMUYbXRM2TWbQgw4HeXu3TEfQqwwyP476H9OQCOKeNwGlzfelz24Md86LHzHkq5QzfR7Qos_nyOvl6eP1fravPx-rZ62lSeCjlWTrAm-qiloNxLiJrTZko6BqaUAAmBOxoaKmopVfRMCi-iZmCYINE1wOfo4bJ3n9P0UhntNh3yMJ20THCpteJETC11afmcSskQ7T63vcsnS4k9o7L_qOwZlT2j4r82E2CR</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Pawar, Jayant P</creator><creator>V. Ingole, Prashant</creator><general>Ahmad Dahlan University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201001</creationdate><title>Hidden Markov model technique for dynamic spectrum access</title><author>Pawar, Jayant P ; V. Ingole, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c146t-a42bfcf86413c6ef831bf868fd2774e6ed3a1db145667fc264c4f82e9240fabe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cognitive radio</topic><topic>Eigenvalues</topic><topic>Emission</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Maximum likelihood estimates</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Parameter estimation</topic><topic>Power spectral density</topic><topic>Probability</topic><topic>Random variables</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pawar, Jayant P</creatorcontrib><creatorcontrib>V. Ingole, Prashant</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Telkomnika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pawar, Jayant P</au><au>V. Ingole, Prashant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden Markov model technique for dynamic spectrum access</atitle><jtitle>Telkomnika</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>18</volume><issue>5</issue><spage>2780</spage><epage>2786</epage><pages>2780-2786</pages><issn>1693-6930</issn><eissn>2302-9293</eissn><abstract>Keywords: Baum-Welch algorithm Cognitive radio network Dynamic spectrum access Hidden Markov process Markov chain ABSTRACT Dynamic spectrum access is a paradigm used to access the spectrum dynamically. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transition and emission matrix, and then we compare the estimated states prediction performance of both the methods using stationary distribution of average estimated transition matrix calculated by both the methods. 1.INTRODUCTION Spectrum sensing is usually done by measuring the power spectral density of the channel of interest in cognitive radio [1] based system to perform the dynamic spectrum access [2] operation. Estimation using maximum likelihood algorithm We also obtained the estimated transition probability and emission probability matrix by using the maximum likelihood (ML) estimate. Table 5 shows the average of estimated transition matrices for both the HMM i.e. HMM1 and HMM2 using maximum likelihood method along with its stationary distribution.</abstract><cop>Yogyakarta</cop><pub>Ahmad Dahlan University</pub><doi>10.12928/telkomnika.v18i5.14470</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1693-6930 |
ispartof | Telkomnika, 2020-10, Vol.18 (5), p.2780-2786 |
issn | 1693-6930 2302-9293 |
language | eng |
recordid | cdi_proquest_journals_2436887304 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Cognitive radio Eigenvalues Emission Markov analysis Markov chains Maximum likelihood estimates Maximum likelihood estimation Maximum likelihood method Parameter estimation Power spectral density Probability Random variables Transition probabilities |
title | Hidden Markov model technique for dynamic spectrum access |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20Markov%20model%20technique%20for%20dynamic%20spectrum%20access&rft.jtitle=Telkomnika&rft.au=Pawar,%20Jayant%20P&rft.date=2020-10-01&rft.volume=18&rft.issue=5&rft.spage=2780&rft.epage=2786&rft.pages=2780-2786&rft.issn=1693-6930&rft.eissn=2302-9293&rft_id=info:doi/10.12928/telkomnika.v18i5.14470&rft_dat=%3Cproquest_cross%3E2436887304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436887304&rft_id=info:pmid/&rfr_iscdi=true |