Hidden Markov model technique for dynamic spectrum access

Keywords: Baum-Welch algorithm Cognitive radio network Dynamic spectrum access Hidden Markov process Markov chain ABSTRACT Dynamic spectrum access is a paradigm used to access the spectrum dynamically. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Telkomnika 2020-10, Vol.18 (5), p.2780-2786
Hauptverfasser: Pawar, Jayant P, V. Ingole, Prashant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2786
container_issue 5
container_start_page 2780
container_title Telkomnika
container_volume 18
creator Pawar, Jayant P
V. Ingole, Prashant
description Keywords: Baum-Welch algorithm Cognitive radio network Dynamic spectrum access Hidden Markov process Markov chain ABSTRACT Dynamic spectrum access is a paradigm used to access the spectrum dynamically. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transition and emission matrix, and then we compare the estimated states prediction performance of both the methods using stationary distribution of average estimated transition matrix calculated by both the methods. 1.INTRODUCTION Spectrum sensing is usually done by measuring the power spectral density of the channel of interest in cognitive radio [1] based system to perform the dynamic spectrum access [2] operation. Estimation using maximum likelihood algorithm We also obtained the estimated transition probability and emission probability matrix by using the maximum likelihood (ML) estimate. Table 5 shows the average of estimated transition matrices for both the HMM i.e. HMM1 and HMM2 using maximum likelihood method along with its stationary distribution.
doi_str_mv 10.12928/telkomnika.v18i5.14470
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436887304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436887304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c146t-a42bfcf86413c6ef831bf868fd2774e6ed3a1db145667fc264c4f82e9240fabe3</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWGp_gwGft-a2uTxKUStUfNHnkE0muN3upibbQv-9Syt4YDgcOMwMH0L3lCwpM0w_jrDrUj-0nVseqW7rJRVCkSs0Y5ywyjDDr9GMSsOracgtWpSyJZMUYbXRM2TWbQgw4HeXu3TEfQqwwyP476H9OQCOKeNwGlzfelz24Md86LHzHkq5QzfR7Qos_nyOvl6eP1fravPx-rZ62lSeCjlWTrAm-qiloNxLiJrTZko6BqaUAAmBOxoaKmopVfRMCi-iZmCYINE1wOfo4bJ3n9P0UhntNh3yMJ20THCpteJETC11afmcSskQ7T63vcsnS4k9o7L_qOwZlT2j4r82E2CR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436887304</pqid></control><display><type>article</type><title>Hidden Markov model technique for dynamic spectrum access</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pawar, Jayant P ; V. Ingole, Prashant</creator><creatorcontrib>Pawar, Jayant P ; V. Ingole, Prashant</creatorcontrib><description>Keywords: Baum-Welch algorithm Cognitive radio network Dynamic spectrum access Hidden Markov process Markov chain ABSTRACT Dynamic spectrum access is a paradigm used to access the spectrum dynamically. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transition and emission matrix, and then we compare the estimated states prediction performance of both the methods using stationary distribution of average estimated transition matrix calculated by both the methods. 1.INTRODUCTION Spectrum sensing is usually done by measuring the power spectral density of the channel of interest in cognitive radio [1] based system to perform the dynamic spectrum access [2] operation. Estimation using maximum likelihood algorithm We also obtained the estimated transition probability and emission probability matrix by using the maximum likelihood (ML) estimate. Table 5 shows the average of estimated transition matrices for both the HMM i.e. HMM1 and HMM2 using maximum likelihood method along with its stationary distribution.</description><identifier>ISSN: 1693-6930</identifier><identifier>EISSN: 2302-9293</identifier><identifier>DOI: 10.12928/telkomnika.v18i5.14470</identifier><language>eng</language><publisher>Yogyakarta: Ahmad Dahlan University</publisher><subject>Algorithms ; Cognitive radio ; Eigenvalues ; Emission ; Markov analysis ; Markov chains ; Maximum likelihood estimates ; Maximum likelihood estimation ; Maximum likelihood method ; Parameter estimation ; Power spectral density ; Probability ; Random variables ; Transition probabilities</subject><ispartof>Telkomnika, 2020-10, Vol.18 (5), p.2780-2786</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pawar, Jayant P</creatorcontrib><creatorcontrib>V. Ingole, Prashant</creatorcontrib><title>Hidden Markov model technique for dynamic spectrum access</title><title>Telkomnika</title><description>Keywords: Baum-Welch algorithm Cognitive radio network Dynamic spectrum access Hidden Markov process Markov chain ABSTRACT Dynamic spectrum access is a paradigm used to access the spectrum dynamically. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transition and emission matrix, and then we compare the estimated states prediction performance of both the methods using stationary distribution of average estimated transition matrix calculated by both the methods. 1.INTRODUCTION Spectrum sensing is usually done by measuring the power spectral density of the channel of interest in cognitive radio [1] based system to perform the dynamic spectrum access [2] operation. Estimation using maximum likelihood algorithm We also obtained the estimated transition probability and emission probability matrix by using the maximum likelihood (ML) estimate. Table 5 shows the average of estimated transition matrices for both the HMM i.e. HMM1 and HMM2 using maximum likelihood method along with its stationary distribution.</description><subject>Algorithms</subject><subject>Cognitive radio</subject><subject>Eigenvalues</subject><subject>Emission</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Maximum likelihood estimates</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Parameter estimation</subject><subject>Power spectral density</subject><subject>Probability</subject><subject>Random variables</subject><subject>Transition probabilities</subject><issn>1693-6930</issn><issn>2302-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkFtLAzEQhYMoWGp_gwGft-a2uTxKUStUfNHnkE0muN3upibbQv-9Syt4YDgcOMwMH0L3lCwpM0w_jrDrUj-0nVseqW7rJRVCkSs0Y5ywyjDDr9GMSsOracgtWpSyJZMUYbXRM2TWbQgw4HeXu3TEfQqwwyP476H9OQCOKeNwGlzfelz24Md86LHzHkq5QzfR7Qos_nyOvl6eP1fravPx-rZ62lSeCjlWTrAm-qiloNxLiJrTZko6BqaUAAmBOxoaKmopVfRMCi-iZmCYINE1wOfo4bJ3n9P0UhntNh3yMJ20THCpteJETC11afmcSskQ7T63vcsnS4k9o7L_qOwZlT2j4r82E2CR</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Pawar, Jayant P</creator><creator>V. Ingole, Prashant</creator><general>Ahmad Dahlan University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201001</creationdate><title>Hidden Markov model technique for dynamic spectrum access</title><author>Pawar, Jayant P ; V. Ingole, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c146t-a42bfcf86413c6ef831bf868fd2774e6ed3a1db145667fc264c4f82e9240fabe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cognitive radio</topic><topic>Eigenvalues</topic><topic>Emission</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Maximum likelihood estimates</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Parameter estimation</topic><topic>Power spectral density</topic><topic>Probability</topic><topic>Random variables</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pawar, Jayant P</creatorcontrib><creatorcontrib>V. Ingole, Prashant</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Telkomnika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pawar, Jayant P</au><au>V. Ingole, Prashant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden Markov model technique for dynamic spectrum access</atitle><jtitle>Telkomnika</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>18</volume><issue>5</issue><spage>2780</spage><epage>2786</epage><pages>2780-2786</pages><issn>1693-6930</issn><eissn>2302-9293</eissn><abstract>Keywords: Baum-Welch algorithm Cognitive radio network Dynamic spectrum access Hidden Markov process Markov chain ABSTRACT Dynamic spectrum access is a paradigm used to access the spectrum dynamically. Using the Baum-Welch algorithm and maximum likelihood algorithm we calculated the estimated transition and emission matrix, and then we compare the estimated states prediction performance of both the methods using stationary distribution of average estimated transition matrix calculated by both the methods. 1.INTRODUCTION Spectrum sensing is usually done by measuring the power spectral density of the channel of interest in cognitive radio [1] based system to perform the dynamic spectrum access [2] operation. Estimation using maximum likelihood algorithm We also obtained the estimated transition probability and emission probability matrix by using the maximum likelihood (ML) estimate. Table 5 shows the average of estimated transition matrices for both the HMM i.e. HMM1 and HMM2 using maximum likelihood method along with its stationary distribution.</abstract><cop>Yogyakarta</cop><pub>Ahmad Dahlan University</pub><doi>10.12928/telkomnika.v18i5.14470</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1693-6930
ispartof Telkomnika, 2020-10, Vol.18 (5), p.2780-2786
issn 1693-6930
2302-9293
language eng
recordid cdi_proquest_journals_2436887304
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Cognitive radio
Eigenvalues
Emission
Markov analysis
Markov chains
Maximum likelihood estimates
Maximum likelihood estimation
Maximum likelihood method
Parameter estimation
Power spectral density
Probability
Random variables
Transition probabilities
title Hidden Markov model technique for dynamic spectrum access
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20Markov%20model%20technique%20for%20dynamic%20spectrum%20access&rft.jtitle=Telkomnika&rft.au=Pawar,%20Jayant%20P&rft.date=2020-10-01&rft.volume=18&rft.issue=5&rft.spage=2780&rft.epage=2786&rft.pages=2780-2786&rft.issn=1693-6930&rft.eissn=2302-9293&rft_id=info:doi/10.12928/telkomnika.v18i5.14470&rft_dat=%3Cproquest_cross%3E2436887304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436887304&rft_id=info:pmid/&rfr_iscdi=true