Saliency-based classification of objects in unconstrained underwater environments
Exploration of the deep-sea underwater environment is a challenging and non-trivial task. Underwater vehicles used for the exploration of such environments capture videos continuously. The processing of these videos is a major bottleneck for scientific research in this area. This paper presents a me...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2020-09, Vol.79 (35-36), p.25835-25851 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25851 |
---|---|
container_issue | 35-36 |
container_start_page | 25835 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Kumar, Nitin Sardana, H. K. Shome, S. N. Singh, Vishavpreet |
description | Exploration of the deep-sea underwater environment is a challenging and non-trivial task. Underwater vehicles used for the exploration of such environments capture videos continuously. The processing of these videos is a major bottleneck for scientific research in this area. This paper presents a methodology for the classification of the objects in the unconstrained underwater environments into two broad classes namely - man-made and natural. The classification of the objects is achieved using the saliency gradient based morphological active contour models. A bag of features acquired from the contours of the objects is used for the classification using various classifiers. Principal Component Analysis is used for the removal of redundancy in the feature set. The proposed features classify the objects present in the unconstrained underwater environment into a man-made/natural class using the proposed features. The results show that all the classifiers performed well; though KNN and ensemble subspace KNN, performed marginally better. |
doi_str_mv | 10.1007/s11042-020-09221-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436699540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436699540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-87904f1f3db00b27b3ae472dfc15be4b07927838240ee8a3abaf6a75c3a70a903</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNYyYzSym-oCCirkOSSSSlTWqSsfTfO3UEd67uWXznXPgQuiRwTQDETSYEOMVAAUNHKcG7IzQjtWBYCEqOx8xawKIGcorOcl4BkKamfIZeXtXa22D2WKts-8qsVc7eeaOKj6GKrop6ZU3JlQ_VEEwMuSTlw4gOobdpp4pNlQ1fPsWwsaHkc3Ti1Drbi987R-_3d2-LR7x8fnha3C6xYaQruBUdcEcc6zWApkIzZbmgvTOk1pZrEB0VLWspB2tbxZRWrlGiNkwJUB2wObqadrcpfg42F7mKQwrjS0k5a5quq_mBohNlUsw5WSe3yW9U2ksC8qBOTurkqE7-qJO7scSmUh7h8GHT3_Q_rW837HMv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436699540</pqid></control><display><type>article</type><title>Saliency-based classification of objects in unconstrained underwater environments</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, Nitin ; Sardana, H. K. ; Shome, S. N. ; Singh, Vishavpreet</creator><creatorcontrib>Kumar, Nitin ; Sardana, H. K. ; Shome, S. N. ; Singh, Vishavpreet</creatorcontrib><description>Exploration of the deep-sea underwater environment is a challenging and non-trivial task. Underwater vehicles used for the exploration of such environments capture videos continuously. The processing of these videos is a major bottleneck for scientific research in this area. This paper presents a methodology for the classification of the objects in the unconstrained underwater environments into two broad classes namely - man-made and natural. The classification of the objects is achieved using the saliency gradient based morphological active contour models. A bag of features acquired from the contours of the objects is used for the classification using various classifiers. Principal Component Analysis is used for the removal of redundancy in the feature set. The proposed features classify the objects present in the unconstrained underwater environment into a man-made/natural class using the proposed features. The results show that all the classifiers performed well; though KNN and ensemble subspace KNN, performed marginally better.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09221-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Classifiers ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep sea ; Exploration ; Multimedia Information Systems ; Principal components analysis ; Redundancy ; Salience ; Special Purpose and Application-Based Systems ; Underwater vehicles</subject><ispartof>Multimedia tools and applications, 2020-09, Vol.79 (35-36), p.25835-25851</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-87904f1f3db00b27b3ae472dfc15be4b07927838240ee8a3abaf6a75c3a70a903</citedby><cites>FETCH-LOGICAL-c319t-87904f1f3db00b27b3ae472dfc15be4b07927838240ee8a3abaf6a75c3a70a903</cites><orcidid>0000-0001-6072-3305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09221-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09221-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Sardana, H. K.</creatorcontrib><creatorcontrib>Shome, S. N.</creatorcontrib><creatorcontrib>Singh, Vishavpreet</creatorcontrib><title>Saliency-based classification of objects in unconstrained underwater environments</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Exploration of the deep-sea underwater environment is a challenging and non-trivial task. Underwater vehicles used for the exploration of such environments capture videos continuously. The processing of these videos is a major bottleneck for scientific research in this area. This paper presents a methodology for the classification of the objects in the unconstrained underwater environments into two broad classes namely - man-made and natural. The classification of the objects is achieved using the saliency gradient based morphological active contour models. A bag of features acquired from the contours of the objects is used for the classification using various classifiers. Principal Component Analysis is used for the removal of redundancy in the feature set. The proposed features classify the objects present in the unconstrained underwater environment into a man-made/natural class using the proposed features. The results show that all the classifiers performed well; though KNN and ensemble subspace KNN, performed marginally better.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep sea</subject><subject>Exploration</subject><subject>Multimedia Information Systems</subject><subject>Principal components analysis</subject><subject>Redundancy</subject><subject>Salience</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Underwater vehicles</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNYyYzSym-oCCirkOSSSSlTWqSsfTfO3UEd67uWXznXPgQuiRwTQDETSYEOMVAAUNHKcG7IzQjtWBYCEqOx8xawKIGcorOcl4BkKamfIZeXtXa22D2WKts-8qsVc7eeaOKj6GKrop6ZU3JlQ_VEEwMuSTlw4gOobdpp4pNlQ1fPsWwsaHkc3Ti1Drbi987R-_3d2-LR7x8fnha3C6xYaQruBUdcEcc6zWApkIzZbmgvTOk1pZrEB0VLWspB2tbxZRWrlGiNkwJUB2wObqadrcpfg42F7mKQwrjS0k5a5quq_mBohNlUsw5WSe3yW9U2ksC8qBOTurkqE7-qJO7scSmUh7h8GHT3_Q_rW837HMv</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kumar, Nitin</creator><creator>Sardana, H. K.</creator><creator>Shome, S. N.</creator><creator>Singh, Vishavpreet</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6072-3305</orcidid></search><sort><creationdate>20200901</creationdate><title>Saliency-based classification of objects in unconstrained underwater environments</title><author>Kumar, Nitin ; Sardana, H. K. ; Shome, S. N. ; Singh, Vishavpreet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-87904f1f3db00b27b3ae472dfc15be4b07927838240ee8a3abaf6a75c3a70a903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep sea</topic><topic>Exploration</topic><topic>Multimedia Information Systems</topic><topic>Principal components analysis</topic><topic>Redundancy</topic><topic>Salience</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Underwater vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Sardana, H. K.</creatorcontrib><creatorcontrib>Shome, S. N.</creatorcontrib><creatorcontrib>Singh, Vishavpreet</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Nitin</au><au>Sardana, H. K.</au><au>Shome, S. N.</au><au>Singh, Vishavpreet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saliency-based classification of objects in unconstrained underwater environments</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>79</volume><issue>35-36</issue><spage>25835</spage><epage>25851</epage><pages>25835-25851</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Exploration of the deep-sea underwater environment is a challenging and non-trivial task. Underwater vehicles used for the exploration of such environments capture videos continuously. The processing of these videos is a major bottleneck for scientific research in this area. This paper presents a methodology for the classification of the objects in the unconstrained underwater environments into two broad classes namely - man-made and natural. The classification of the objects is achieved using the saliency gradient based morphological active contour models. A bag of features acquired from the contours of the objects is used for the classification using various classifiers. Principal Component Analysis is used for the removal of redundancy in the feature set. The proposed features classify the objects present in the unconstrained underwater environment into a man-made/natural class using the proposed features. The results show that all the classifiers performed well; though KNN and ensemble subspace KNN, performed marginally better.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09221-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6072-3305</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-09, Vol.79 (35-36), p.25835-25851 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2436699540 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classification Classifiers Computer Communication Networks Computer Science Data Structures and Information Theory Deep sea Exploration Multimedia Information Systems Principal components analysis Redundancy Salience Special Purpose and Application-Based Systems Underwater vehicles |
title | Saliency-based classification of objects in unconstrained underwater environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saliency-based%20classification%20of%20objects%20in%20unconstrained%20underwater%20environments&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Kumar,%20Nitin&rft.date=2020-09-01&rft.volume=79&rft.issue=35-36&rft.spage=25835&rft.epage=25851&rft.pages=25835-25851&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09221-w&rft_dat=%3Cproquest_cross%3E2436699540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436699540&rft_id=info:pmid/&rfr_iscdi=true |