Saliency-based classification of objects in unconstrained underwater environments

Exploration of the deep-sea underwater environment is a challenging and non-trivial task. Underwater vehicles used for the exploration of such environments capture videos continuously. The processing of these videos is a major bottleneck for scientific research in this area. This paper presents a me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-09, Vol.79 (35-36), p.25835-25851
Hauptverfasser: Kumar, Nitin, Sardana, H. K., Shome, S. N., Singh, Vishavpreet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25851
container_issue 35-36
container_start_page 25835
container_title Multimedia tools and applications
container_volume 79
creator Kumar, Nitin
Sardana, H. K.
Shome, S. N.
Singh, Vishavpreet
description Exploration of the deep-sea underwater environment is a challenging and non-trivial task. Underwater vehicles used for the exploration of such environments capture videos continuously. The processing of these videos is a major bottleneck for scientific research in this area. This paper presents a methodology for the classification of the objects in the unconstrained underwater environments into two broad classes namely - man-made and natural. The classification of the objects is achieved using the saliency gradient based morphological active contour models. A bag of features acquired from the contours of the objects is used for the classification using various classifiers. Principal Component Analysis is used for the removal of redundancy in the feature set. The proposed features classify the objects present in the unconstrained underwater environment into a man-made/natural class using the proposed features. The results show that all the classifiers performed well; though KNN and ensemble subspace KNN, performed marginally better.
doi_str_mv 10.1007/s11042-020-09221-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436699540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436699540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-87904f1f3db00b27b3ae472dfc15be4b07927838240ee8a3abaf6a75c3a70a903</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNYyYzSym-oCCirkOSSSSlTWqSsfTfO3UEd67uWXznXPgQuiRwTQDETSYEOMVAAUNHKcG7IzQjtWBYCEqOx8xawKIGcorOcl4BkKamfIZeXtXa22D2WKts-8qsVc7eeaOKj6GKrop6ZU3JlQ_VEEwMuSTlw4gOobdpp4pNlQ1fPsWwsaHkc3Ti1Drbi987R-_3d2-LR7x8fnha3C6xYaQruBUdcEcc6zWApkIzZbmgvTOk1pZrEB0VLWspB2tbxZRWrlGiNkwJUB2wObqadrcpfg42F7mKQwrjS0k5a5quq_mBohNlUsw5WSe3yW9U2ksC8qBOTurkqE7-qJO7scSmUh7h8GHT3_Q_rW837HMv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436699540</pqid></control><display><type>article</type><title>Saliency-based classification of objects in unconstrained underwater environments</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, Nitin ; Sardana, H. K. ; Shome, S. N. ; Singh, Vishavpreet</creator><creatorcontrib>Kumar, Nitin ; Sardana, H. K. ; Shome, S. N. ; Singh, Vishavpreet</creatorcontrib><description>Exploration of the deep-sea underwater environment is a challenging and non-trivial task. Underwater vehicles used for the exploration of such environments capture videos continuously. The processing of these videos is a major bottleneck for scientific research in this area. This paper presents a methodology for the classification of the objects in the unconstrained underwater environments into two broad classes namely - man-made and natural. The classification of the objects is achieved using the saliency gradient based morphological active contour models. A bag of features acquired from the contours of the objects is used for the classification using various classifiers. Principal Component Analysis is used for the removal of redundancy in the feature set. The proposed features classify the objects present in the unconstrained underwater environment into a man-made/natural class using the proposed features. The results show that all the classifiers performed well; though KNN and ensemble subspace KNN, performed marginally better.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09221-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Classifiers ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep sea ; Exploration ; Multimedia Information Systems ; Principal components analysis ; Redundancy ; Salience ; Special Purpose and Application-Based Systems ; Underwater vehicles</subject><ispartof>Multimedia tools and applications, 2020-09, Vol.79 (35-36), p.25835-25851</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-87904f1f3db00b27b3ae472dfc15be4b07927838240ee8a3abaf6a75c3a70a903</citedby><cites>FETCH-LOGICAL-c319t-87904f1f3db00b27b3ae472dfc15be4b07927838240ee8a3abaf6a75c3a70a903</cites><orcidid>0000-0001-6072-3305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09221-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09221-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Sardana, H. K.</creatorcontrib><creatorcontrib>Shome, S. N.</creatorcontrib><creatorcontrib>Singh, Vishavpreet</creatorcontrib><title>Saliency-based classification of objects in unconstrained underwater environments</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Exploration of the deep-sea underwater environment is a challenging and non-trivial task. Underwater vehicles used for the exploration of such environments capture videos continuously. The processing of these videos is a major bottleneck for scientific research in this area. This paper presents a methodology for the classification of the objects in the unconstrained underwater environments into two broad classes namely - man-made and natural. The classification of the objects is achieved using the saliency gradient based morphological active contour models. A bag of features acquired from the contours of the objects is used for the classification using various classifiers. Principal Component Analysis is used for the removal of redundancy in the feature set. The proposed features classify the objects present in the unconstrained underwater environment into a man-made/natural class using the proposed features. The results show that all the classifiers performed well; though KNN and ensemble subspace KNN, performed marginally better.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep sea</subject><subject>Exploration</subject><subject>Multimedia Information Systems</subject><subject>Principal components analysis</subject><subject>Redundancy</subject><subject>Salience</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Underwater vehicles</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNYyYzSym-oCCirkOSSSSlTWqSsfTfO3UEd67uWXznXPgQuiRwTQDETSYEOMVAAUNHKcG7IzQjtWBYCEqOx8xawKIGcorOcl4BkKamfIZeXtXa22D2WKts-8qsVc7eeaOKj6GKrop6ZU3JlQ_VEEwMuSTlw4gOobdpp4pNlQ1fPsWwsaHkc3Ti1Drbi987R-_3d2-LR7x8fnha3C6xYaQruBUdcEcc6zWApkIzZbmgvTOk1pZrEB0VLWspB2tbxZRWrlGiNkwJUB2wObqadrcpfg42F7mKQwrjS0k5a5quq_mBohNlUsw5WSe3yW9U2ksC8qBOTurkqE7-qJO7scSmUh7h8GHT3_Q_rW837HMv</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kumar, Nitin</creator><creator>Sardana, H. K.</creator><creator>Shome, S. N.</creator><creator>Singh, Vishavpreet</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6072-3305</orcidid></search><sort><creationdate>20200901</creationdate><title>Saliency-based classification of objects in unconstrained underwater environments</title><author>Kumar, Nitin ; Sardana, H. K. ; Shome, S. N. ; Singh, Vishavpreet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-87904f1f3db00b27b3ae472dfc15be4b07927838240ee8a3abaf6a75c3a70a903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep sea</topic><topic>Exploration</topic><topic>Multimedia Information Systems</topic><topic>Principal components analysis</topic><topic>Redundancy</topic><topic>Salience</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Underwater vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Sardana, H. K.</creatorcontrib><creatorcontrib>Shome, S. N.</creatorcontrib><creatorcontrib>Singh, Vishavpreet</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Nitin</au><au>Sardana, H. K.</au><au>Shome, S. N.</au><au>Singh, Vishavpreet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saliency-based classification of objects in unconstrained underwater environments</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>79</volume><issue>35-36</issue><spage>25835</spage><epage>25851</epage><pages>25835-25851</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Exploration of the deep-sea underwater environment is a challenging and non-trivial task. Underwater vehicles used for the exploration of such environments capture videos continuously. The processing of these videos is a major bottleneck for scientific research in this area. This paper presents a methodology for the classification of the objects in the unconstrained underwater environments into two broad classes namely - man-made and natural. The classification of the objects is achieved using the saliency gradient based morphological active contour models. A bag of features acquired from the contours of the objects is used for the classification using various classifiers. Principal Component Analysis is used for the removal of redundancy in the feature set. The proposed features classify the objects present in the unconstrained underwater environment into a man-made/natural class using the proposed features. The results show that all the classifiers performed well; though KNN and ensemble subspace KNN, performed marginally better.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09221-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6072-3305</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-09, Vol.79 (35-36), p.25835-25851
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2436699540
source SpringerLink Journals - AutoHoldings
subjects Classification
Classifiers
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep sea
Exploration
Multimedia Information Systems
Principal components analysis
Redundancy
Salience
Special Purpose and Application-Based Systems
Underwater vehicles
title Saliency-based classification of objects in unconstrained underwater environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saliency-based%20classification%20of%20objects%20in%20unconstrained%20underwater%20environments&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Kumar,%20Nitin&rft.date=2020-09-01&rft.volume=79&rft.issue=35-36&rft.spage=25835&rft.epage=25851&rft.pages=25835-25851&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09221-w&rft_dat=%3Cproquest_cross%3E2436699540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436699540&rft_id=info:pmid/&rfr_iscdi=true