Augmented reality for botulinum toxin injection

Summary Augmented‐reality (AR) devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency and safety and reduce cost. They are also used to enhance surgical training. In this study, we implemented an AR application for Botox injecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2020-09, Vol.32 (18), p.n/a
Hauptverfasser: Kim, HyoJoon, Jeong, SangHui, Seo, JiHyeon, Park, InSeok, Ko, Hoon, Moon, Seong Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Concurrency and computation
container_volume 32
creator Kim, HyoJoon
Jeong, SangHui
Seo, JiHyeon
Park, InSeok
Ko, Hoon
Moon, Seong Yong
description Summary Augmented‐reality (AR) devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency and safety and reduce cost. They are also used to enhance surgical training. In this study, we implemented an AR application for Botox injections using a face recognition algorithm based on deep learning, and we evaluated the recognition accuracy of this application using 27 participants. The accuracy was around 3 mm for all parts of the facial region. The method of increasing surgical efficiency with AR is accurate enough to be used for surgery and provides great potential for further development.
doi_str_mv 10.1002/cpe.5526
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436639096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436639096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-7762536cb721c4579e1119a6d49297518595da80e4ee4b174600b755f34fd7103</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFKxV8CcEvHhJu7Of3WMJtQoFPeh5ycdENiTZuEnQ_ntTI948zRwe3hleQm6BroBSts47XEnJ1BlZgOQspoqL87-dqUty1fcVpQCUw4Kst-N7g-2ARRQwrd1wjEofoswPY-3asYkG_-XayLUV5oPz7TW5KNO6x5vfuSRvD7vX5DE-PO-fku0hzpnhKtZaMclVnmkGuZDaIACYVBXCMKMlbKSRRbqhKBBFBlooSjMtZclFWejptSW5m3O74D9G7Adb-TG000nLBFeKG2rUpO5nlQff9wFL2wXXpOFogdpTHXaqw57qmGg8009X4_FfZ5OX3Y__BnFGXho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436639096</pqid></control><display><type>article</type><title>Augmented reality for botulinum toxin injection</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, HyoJoon ; Jeong, SangHui ; Seo, JiHyeon ; Park, InSeok ; Ko, Hoon ; Moon, Seong Yong</creator><creatorcontrib>Kim, HyoJoon ; Jeong, SangHui ; Seo, JiHyeon ; Park, InSeok ; Ko, Hoon ; Moon, Seong Yong</creatorcontrib><description>Summary Augmented‐reality (AR) devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency and safety and reduce cost. They are also used to enhance surgical training. In this study, we implemented an AR application for Botox injections using a face recognition algorithm based on deep learning, and we evaluated the recognition accuracy of this application using 27 participants. The accuracy was around 3 mm for all parts of the facial region. The method of increasing surgical efficiency with AR is accurate enough to be used for surgery and provides great potential for further development.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5526</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Augmented reality ; botulinum toxins ; clinical education ; Diagnostic systems ; Face recognition ; injection technique ; Machine learning ; Physicians ; Scientific visualization</subject><ispartof>Concurrency and computation, 2020-09, Vol.32 (18), p.n/a</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-7762536cb721c4579e1119a6d49297518595da80e4ee4b174600b755f34fd7103</citedby><cites>FETCH-LOGICAL-c2936-7762536cb721c4579e1119a6d49297518595da80e4ee4b174600b755f34fd7103</cites><orcidid>0000-0002-2386-2872 ; 0000-0001-6123-4810 ; 0000-0002-7513-4404 ; 0000-0002-4604-1735 ; 0000-0002-2081-8753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5526$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5526$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kim, HyoJoon</creatorcontrib><creatorcontrib>Jeong, SangHui</creatorcontrib><creatorcontrib>Seo, JiHyeon</creatorcontrib><creatorcontrib>Park, InSeok</creatorcontrib><creatorcontrib>Ko, Hoon</creatorcontrib><creatorcontrib>Moon, Seong Yong</creatorcontrib><title>Augmented reality for botulinum toxin injection</title><title>Concurrency and computation</title><description>Summary Augmented‐reality (AR) devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency and safety and reduce cost. They are also used to enhance surgical training. In this study, we implemented an AR application for Botox injections using a face recognition algorithm based on deep learning, and we evaluated the recognition accuracy of this application using 27 participants. The accuracy was around 3 mm for all parts of the facial region. The method of increasing surgical efficiency with AR is accurate enough to be used for surgery and provides great potential for further development.</description><subject>Algorithms</subject><subject>Augmented reality</subject><subject>botulinum toxins</subject><subject>clinical education</subject><subject>Diagnostic systems</subject><subject>Face recognition</subject><subject>injection technique</subject><subject>Machine learning</subject><subject>Physicians</subject><subject>Scientific visualization</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQBuBFFKxV8CcEvHhJu7Of3WMJtQoFPeh5ycdENiTZuEnQ_ntTI948zRwe3hleQm6BroBSts47XEnJ1BlZgOQspoqL87-dqUty1fcVpQCUw4Kst-N7g-2ARRQwrd1wjEofoswPY-3asYkG_-XayLUV5oPz7TW5KNO6x5vfuSRvD7vX5DE-PO-fku0hzpnhKtZaMclVnmkGuZDaIACYVBXCMKMlbKSRRbqhKBBFBlooSjMtZclFWejptSW5m3O74D9G7Adb-TG000nLBFeKG2rUpO5nlQff9wFL2wXXpOFogdpTHXaqw57qmGg8009X4_FfZ5OX3Y__BnFGXho</recordid><startdate>20200925</startdate><enddate>20200925</enddate><creator>Kim, HyoJoon</creator><creator>Jeong, SangHui</creator><creator>Seo, JiHyeon</creator><creator>Park, InSeok</creator><creator>Ko, Hoon</creator><creator>Moon, Seong Yong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2386-2872</orcidid><orcidid>https://orcid.org/0000-0001-6123-4810</orcidid><orcidid>https://orcid.org/0000-0002-7513-4404</orcidid><orcidid>https://orcid.org/0000-0002-4604-1735</orcidid><orcidid>https://orcid.org/0000-0002-2081-8753</orcidid></search><sort><creationdate>20200925</creationdate><title>Augmented reality for botulinum toxin injection</title><author>Kim, HyoJoon ; Jeong, SangHui ; Seo, JiHyeon ; Park, InSeok ; Ko, Hoon ; Moon, Seong Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-7762536cb721c4579e1119a6d49297518595da80e4ee4b174600b755f34fd7103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Augmented reality</topic><topic>botulinum toxins</topic><topic>clinical education</topic><topic>Diagnostic systems</topic><topic>Face recognition</topic><topic>injection technique</topic><topic>Machine learning</topic><topic>Physicians</topic><topic>Scientific visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, HyoJoon</creatorcontrib><creatorcontrib>Jeong, SangHui</creatorcontrib><creatorcontrib>Seo, JiHyeon</creatorcontrib><creatorcontrib>Park, InSeok</creatorcontrib><creatorcontrib>Ko, Hoon</creatorcontrib><creatorcontrib>Moon, Seong Yong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, HyoJoon</au><au>Jeong, SangHui</au><au>Seo, JiHyeon</au><au>Park, InSeok</au><au>Ko, Hoon</au><au>Moon, Seong Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented reality for botulinum toxin injection</atitle><jtitle>Concurrency and computation</jtitle><date>2020-09-25</date><risdate>2020</risdate><volume>32</volume><issue>18</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary Augmented‐reality (AR) devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency and safety and reduce cost. They are also used to enhance surgical training. In this study, we implemented an AR application for Botox injections using a face recognition algorithm based on deep learning, and we evaluated the recognition accuracy of this application using 27 participants. The accuracy was around 3 mm for all parts of the facial region. The method of increasing surgical efficiency with AR is accurate enough to be used for surgery and provides great potential for further development.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5526</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2386-2872</orcidid><orcidid>https://orcid.org/0000-0001-6123-4810</orcidid><orcidid>https://orcid.org/0000-0002-7513-4404</orcidid><orcidid>https://orcid.org/0000-0002-4604-1735</orcidid><orcidid>https://orcid.org/0000-0002-2081-8753</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2020-09, Vol.32 (18), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2436639096
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Augmented reality
botulinum toxins
clinical education
Diagnostic systems
Face recognition
injection technique
Machine learning
Physicians
Scientific visualization
title Augmented reality for botulinum toxin injection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20reality%20for%20botulinum%20toxin%20injection&rft.jtitle=Concurrency%20and%20computation&rft.au=Kim,%20HyoJoon&rft.date=2020-09-25&rft.volume=32&rft.issue=18&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5526&rft_dat=%3Cproquest_cross%3E2436639096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436639096&rft_id=info:pmid/&rfr_iscdi=true