Minimal Linear Codes From Characteristic Functions

Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of \mathbb {F}_{q} to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2020-09, Vol.66 (9), p.5404-5413
Hauptverfasser: Mesnager, Sihem, Qi, Yanfeng, Ru, Hongming, Tang, Chunming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5413
container_issue 9
container_start_page 5404
container_title IEEE transactions on information theory
container_volume 66
creator Mesnager, Sihem
Qi, Yanfeng
Ru, Hongming
Tang, Chunming
description Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of \mathbb {F}_{q} to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of \mathbb {F}_{q} , we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.
doi_str_mv 10.1109/TIT.2020.2978387
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2436620815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9025180</ieee_id><sourcerecordid>2436620815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d113bf71b335116b80d175ecdf40459fcde319e95299bc7e0a7b75794af236d3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvBk4fOvPxokuMozg0qXnoPaZqyjK2dSSf435vRsdPjPT7fL48PQs-AFwBYvdebekEwwQuihKRS3KAZcC5yVXB2i2YYg8wVY_IePcS4SyvjQGaIfPneH8w-q3zvTMjKoXUxW4XhkJVbE4wdXfBx9DZbnXo7-qGPj-iuM_voni5zjurVR12u8-r7c1Muq9xSwse8BaBNJ6ChlAMUjcQtCO5s2zHMuOps6ygopzhRqrHCYSMawYVipiO0aOkcvU21W7PXx5CeDH96MF6vl5U-3zBVghIJv5DY14k9huHn5OKod8Mp9Ok7TRgtCoIl8EThibJhiDG47loLWJ8l6iRRnyXqi8QUeZki3jl3xRUmHCSm_0WHauA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436620815</pqid></control><display><type>article</type><title>Minimal Linear Codes From Characteristic Functions</title><source>IEEE Electronic Library (IEL)</source><creator>Mesnager, Sihem ; Qi, Yanfeng ; Ru, Hongming ; Tang, Chunming</creator><creatorcontrib>Mesnager, Sihem ; Qi, Yanfeng ; Ru, Hongming ; Tang, Chunming</creatorcontrib><description><![CDATA[Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>, we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.2978387</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary codes ; Binary system ; Boolean functions ; characteristic function ; Characteristic functions ; Codes ; Cryptography ; Electronic mail ; Frequency modulation ; Hamming weight ; Linear codes ; Mathematics ; Minimal linear code ; subspace ; Subspaces ; weight distribution</subject><ispartof>IEEE transactions on information theory, 2020-09, Vol.66 (9), p.5404-5413</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d113bf71b335116b80d175ecdf40459fcde319e95299bc7e0a7b75794af236d3</citedby><cites>FETCH-LOGICAL-c325t-d113bf71b335116b80d175ecdf40459fcde319e95299bc7e0a7b75794af236d3</cites><orcidid>0000-0003-1381-5471 ; 0000-0001-9599-851X ; 0000-0003-4008-2031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9025180$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9025180$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://telecom-paris.hal.science/hal-03973281$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mesnager, Sihem</creatorcontrib><creatorcontrib>Qi, Yanfeng</creatorcontrib><creatorcontrib>Ru, Hongming</creatorcontrib><creatorcontrib>Tang, Chunming</creatorcontrib><title>Minimal Linear Codes From Characteristic Functions</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>, we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.]]></description><subject>Binary codes</subject><subject>Binary system</subject><subject>Boolean functions</subject><subject>characteristic function</subject><subject>Characteristic functions</subject><subject>Codes</subject><subject>Cryptography</subject><subject>Electronic mail</subject><subject>Frequency modulation</subject><subject>Hamming weight</subject><subject>Linear codes</subject><subject>Mathematics</subject><subject>Minimal linear code</subject><subject>subspace</subject><subject>Subspaces</subject><subject>weight distribution</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOKd3wUvBk4fOvPxokuMozg0qXnoPaZqyjK2dSSf435vRsdPjPT7fL48PQs-AFwBYvdebekEwwQuihKRS3KAZcC5yVXB2i2YYg8wVY_IePcS4SyvjQGaIfPneH8w-q3zvTMjKoXUxW4XhkJVbE4wdXfBx9DZbnXo7-qGPj-iuM_voni5zjurVR12u8-r7c1Muq9xSwse8BaBNJ6ChlAMUjcQtCO5s2zHMuOps6ygopzhRqrHCYSMawYVipiO0aOkcvU21W7PXx5CeDH96MF6vl5U-3zBVghIJv5DY14k9huHn5OKod8Mp9Ok7TRgtCoIl8EThibJhiDG47loLWJ8l6iRRnyXqi8QUeZki3jl3xRUmHCSm_0WHauA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Mesnager, Sihem</creator><creator>Qi, Yanfeng</creator><creator>Ru, Hongming</creator><creator>Tang, Chunming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1381-5471</orcidid><orcidid>https://orcid.org/0000-0001-9599-851X</orcidid><orcidid>https://orcid.org/0000-0003-4008-2031</orcidid></search><sort><creationdate>20200901</creationdate><title>Minimal Linear Codes From Characteristic Functions</title><author>Mesnager, Sihem ; Qi, Yanfeng ; Ru, Hongming ; Tang, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d113bf71b335116b80d175ecdf40459fcde319e95299bc7e0a7b75794af236d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binary codes</topic><topic>Binary system</topic><topic>Boolean functions</topic><topic>characteristic function</topic><topic>Characteristic functions</topic><topic>Codes</topic><topic>Cryptography</topic><topic>Electronic mail</topic><topic>Frequency modulation</topic><topic>Hamming weight</topic><topic>Linear codes</topic><topic>Mathematics</topic><topic>Minimal linear code</topic><topic>subspace</topic><topic>Subspaces</topic><topic>weight distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesnager, Sihem</creatorcontrib><creatorcontrib>Qi, Yanfeng</creatorcontrib><creatorcontrib>Ru, Hongming</creatorcontrib><creatorcontrib>Tang, Chunming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mesnager, Sihem</au><au>Qi, Yanfeng</au><au>Ru, Hongming</au><au>Tang, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal Linear Codes From Characteristic Functions</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>66</volume><issue>9</issue><spage>5404</spage><epage>5413</epage><pages>5404-5413</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>, we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.2978387</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1381-5471</orcidid><orcidid>https://orcid.org/0000-0001-9599-851X</orcidid><orcidid>https://orcid.org/0000-0003-4008-2031</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2020-09, Vol.66 (9), p.5404-5413
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2436620815
source IEEE Electronic Library (IEL)
subjects Binary codes
Binary system
Boolean functions
characteristic function
Characteristic functions
Codes
Cryptography
Electronic mail
Frequency modulation
Hamming weight
Linear codes
Mathematics
Minimal linear code
subspace
Subspaces
weight distribution
title Minimal Linear Codes From Characteristic Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20Linear%20Codes%20From%20Characteristic%20Functions&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Mesnager,%20Sihem&rft.date=2020-09-01&rft.volume=66&rft.issue=9&rft.spage=5404&rft.epage=5413&rft.pages=5404-5413&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.2978387&rft_dat=%3Cproquest_RIE%3E2436620815%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436620815&rft_id=info:pmid/&rft_ieee_id=9025180&rfr_iscdi=true