Minimal Linear Codes From Characteristic Functions
Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of \mathbb {F}_{q} to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2020-09, Vol.66 (9), p.5404-5413 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5413 |
---|---|
container_issue | 9 |
container_start_page | 5404 |
container_title | IEEE transactions on information theory |
container_volume | 66 |
creator | Mesnager, Sihem Qi, Yanfeng Ru, Hongming Tang, Chunming |
description | Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of \mathbb {F}_{q} to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of \mathbb {F}_{q} , we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes. |
doi_str_mv | 10.1109/TIT.2020.2978387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2436620815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9025180</ieee_id><sourcerecordid>2436620815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d113bf71b335116b80d175ecdf40459fcde319e95299bc7e0a7b75794af236d3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvBk4fOvPxokuMozg0qXnoPaZqyjK2dSSf435vRsdPjPT7fL48PQs-AFwBYvdebekEwwQuihKRS3KAZcC5yVXB2i2YYg8wVY_IePcS4SyvjQGaIfPneH8w-q3zvTMjKoXUxW4XhkJVbE4wdXfBx9DZbnXo7-qGPj-iuM_voni5zjurVR12u8-r7c1Muq9xSwse8BaBNJ6ChlAMUjcQtCO5s2zHMuOps6ygopzhRqrHCYSMawYVipiO0aOkcvU21W7PXx5CeDH96MF6vl5U-3zBVghIJv5DY14k9huHn5OKod8Mp9Ok7TRgtCoIl8EThibJhiDG47loLWJ8l6iRRnyXqi8QUeZki3jl3xRUmHCSm_0WHauA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436620815</pqid></control><display><type>article</type><title>Minimal Linear Codes From Characteristic Functions</title><source>IEEE Electronic Library (IEL)</source><creator>Mesnager, Sihem ; Qi, Yanfeng ; Ru, Hongming ; Tang, Chunming</creator><creatorcontrib>Mesnager, Sihem ; Qi, Yanfeng ; Ru, Hongming ; Tang, Chunming</creatorcontrib><description><![CDATA[Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>, we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.2978387</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary codes ; Binary system ; Boolean functions ; characteristic function ; Characteristic functions ; Codes ; Cryptography ; Electronic mail ; Frequency modulation ; Hamming weight ; Linear codes ; Mathematics ; Minimal linear code ; subspace ; Subspaces ; weight distribution</subject><ispartof>IEEE transactions on information theory, 2020-09, Vol.66 (9), p.5404-5413</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d113bf71b335116b80d175ecdf40459fcde319e95299bc7e0a7b75794af236d3</citedby><cites>FETCH-LOGICAL-c325t-d113bf71b335116b80d175ecdf40459fcde319e95299bc7e0a7b75794af236d3</cites><orcidid>0000-0003-1381-5471 ; 0000-0001-9599-851X ; 0000-0003-4008-2031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9025180$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9025180$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://telecom-paris.hal.science/hal-03973281$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mesnager, Sihem</creatorcontrib><creatorcontrib>Qi, Yanfeng</creatorcontrib><creatorcontrib>Ru, Hongming</creatorcontrib><creatorcontrib>Tang, Chunming</creatorcontrib><title>Minimal Linear Codes From Characteristic Functions</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>, we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.]]></description><subject>Binary codes</subject><subject>Binary system</subject><subject>Boolean functions</subject><subject>characteristic function</subject><subject>Characteristic functions</subject><subject>Codes</subject><subject>Cryptography</subject><subject>Electronic mail</subject><subject>Frequency modulation</subject><subject>Hamming weight</subject><subject>Linear codes</subject><subject>Mathematics</subject><subject>Minimal linear code</subject><subject>subspace</subject><subject>Subspaces</subject><subject>weight distribution</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOKd3wUvBk4fOvPxokuMozg0qXnoPaZqyjK2dSSf435vRsdPjPT7fL48PQs-AFwBYvdebekEwwQuihKRS3KAZcC5yVXB2i2YYg8wVY_IePcS4SyvjQGaIfPneH8w-q3zvTMjKoXUxW4XhkJVbE4wdXfBx9DZbnXo7-qGPj-iuM_voni5zjurVR12u8-r7c1Muq9xSwse8BaBNJ6ChlAMUjcQtCO5s2zHMuOps6ygopzhRqrHCYSMawYVipiO0aOkcvU21W7PXx5CeDH96MF6vl5U-3zBVghIJv5DY14k9huHn5OKod8Mp9Ok7TRgtCoIl8EThibJhiDG47loLWJ8l6iRRnyXqi8QUeZki3jl3xRUmHCSm_0WHauA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Mesnager, Sihem</creator><creator>Qi, Yanfeng</creator><creator>Ru, Hongming</creator><creator>Tang, Chunming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1381-5471</orcidid><orcidid>https://orcid.org/0000-0001-9599-851X</orcidid><orcidid>https://orcid.org/0000-0003-4008-2031</orcidid></search><sort><creationdate>20200901</creationdate><title>Minimal Linear Codes From Characteristic Functions</title><author>Mesnager, Sihem ; Qi, Yanfeng ; Ru, Hongming ; Tang, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d113bf71b335116b80d175ecdf40459fcde319e95299bc7e0a7b75794af236d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binary codes</topic><topic>Binary system</topic><topic>Boolean functions</topic><topic>characteristic function</topic><topic>Characteristic functions</topic><topic>Codes</topic><topic>Cryptography</topic><topic>Electronic mail</topic><topic>Frequency modulation</topic><topic>Hamming weight</topic><topic>Linear codes</topic><topic>Mathematics</topic><topic>Minimal linear code</topic><topic>subspace</topic><topic>Subspaces</topic><topic>weight distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesnager, Sihem</creatorcontrib><creatorcontrib>Qi, Yanfeng</creatorcontrib><creatorcontrib>Ru, Hongming</creatorcontrib><creatorcontrib>Tang, Chunming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mesnager, Sihem</au><au>Qi, Yanfeng</au><au>Ru, Hongming</au><au>Tang, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal Linear Codes From Characteristic Functions</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>66</volume><issue>9</issue><spage>5404</spage><epage>5413</epage><pages>5404-5413</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[Minimal linear codes have interesting applications in secret sharing schemes and secure two-party computation. This paper uses characteristic functions of some subsets of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> to construct minimal linear codes. By properties of characteristic functions, we can obtain more minimal binary linear codes from known minimal binary linear codes, which generalizes results of Ding et al. [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018]. By characteristic functions corresponding to some subspaces of <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>, we obtain many minimal linear codes, which generalizes results of [IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6536-6545, 2018] and [IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7067-7078, 2019]. Finally, we use characteristic functions to present a characterization of minimal linear codes from the defining set method and present a class of minimal linear codes.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.2978387</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1381-5471</orcidid><orcidid>https://orcid.org/0000-0001-9599-851X</orcidid><orcidid>https://orcid.org/0000-0003-4008-2031</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2020-09, Vol.66 (9), p.5404-5413 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2436620815 |
source | IEEE Electronic Library (IEL) |
subjects | Binary codes Binary system Boolean functions characteristic function Characteristic functions Codes Cryptography Electronic mail Frequency modulation Hamming weight Linear codes Mathematics Minimal linear code subspace Subspaces weight distribution |
title | Minimal Linear Codes From Characteristic Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20Linear%20Codes%20From%20Characteristic%20Functions&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Mesnager,%20Sihem&rft.date=2020-09-01&rft.volume=66&rft.issue=9&rft.spage=5404&rft.epage=5413&rft.pages=5404-5413&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.2978387&rft_dat=%3Cproquest_RIE%3E2436620815%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436620815&rft_id=info:pmid/&rft_ieee_id=9025180&rfr_iscdi=true |