Teaching Crystallography by Determining Small Molecule Structures and 3‑D Printing: An Inorganic Chemistry Laboratory Module
Experimental methods for determining 3-D atomic structures, such as crystallography, are rarely taught in the undergraduate curriculum, yet are considered to be the norm for 3-D structure determination in a research setting. Although a fully physical understanding of crystallography takes years of p...
Gespeichert in:
Veröffentlicht in: | Journal of chemical education 2020-08, Vol.97 (8), p.2273-2279 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2279 |
---|---|
container_issue | 8 |
container_start_page | 2273 |
container_title | Journal of chemical education |
container_volume | 97 |
creator | Brannon, Jacob P Ramirez, Isaac Williams, DaShawn Barding, Gregory A Liu, Yan McCulloch, Kathryn M Chandrasekaran, Perumalreddy Stieber, S. Chantal E |
description | Experimental methods for determining 3-D atomic structures, such as crystallography, are rarely taught in the undergraduate curriculum, yet are considered to be the norm for 3-D structure determination in a research setting. Although a fully physical understanding of crystallography takes years of practice, practical applications and basic interpretation of small-molecule crystallography can be readily integrated into undergraduate curricula to give students a research-like laboratory experience. Three 1-h crystallography laboratory modules were developed using the free Olex2 software to determine the structure of (dithiolene)2Co(1,3,5-triaza-7-phosphaadamantane)·dichloroethane, while introducing basic crystallography knowledge, crystal evaluation through microscopy, practical structure determination skills, and spatial awareness through 3-D printing. Following implementation in an advanced instrumental analysis class composed of 14 Master’s and undergraduate students, the increase of topical knowledge of small molecule crystallography was 18–30% based on tailored assessment surveys, and student feedback was highly positive. This suggests that students without a prior background in crystallography were able to learn and retain information about small molecule crystallography from these laboratory modules. |
doi_str_mv | 10.1021/acs.jchemed.0c00206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436432834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1269302</ericid><sourcerecordid>2436432834</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-42dd6f46e071bdb06a7335f1eb36c18278bfa70aea817a07bf6edb21546d6ce53</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAoRkiXWKH4mTsKvaAkVFIAHryHEmbao0LrazyAZxBa7ISXBJYclqrPkfY30InVMyooTRK6nsaK1WsIFiRBQhjIgDNKApTwLKWXKIBn5HgzRKwmN0Yu2aEMqiNBmg9xeQalU1SzwxnXWyrvXSyO2qw3mHp-DAbKpmJz9vvIYfdA2qrQE_O9Mq1xqwWDYF5l8fn1P8ZKrGefM1Hjd43mizlE2l8MR_rLLOdHghc22k0_75oAvfc4qOSllbONvPIXq9mb1M7oLF4-18Ml4EkvPUBSErClGGAkhM8yInQsacRyWFnAtFExYneSljIkEmNJYkzksBRc5oFIpCKIj4EF32vVuj31qwLlvr1jT-ZMZCLkIPiYfexXuXMtpaA2W2NdVGmi6jJNuBzjzobA8624P2qYs-BaZSf4nZPWUi5YR5_arXf8K_Z_9r_AbhU5BT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436432834</pqid></control><display><type>article</type><title>Teaching Crystallography by Determining Small Molecule Structures and 3‑D Printing: An Inorganic Chemistry Laboratory Module</title><source>American Chemical Society Journals</source><creator>Brannon, Jacob P ; Ramirez, Isaac ; Williams, DaShawn ; Barding, Gregory A ; Liu, Yan ; McCulloch, Kathryn M ; Chandrasekaran, Perumalreddy ; Stieber, S. Chantal E</creator><creatorcontrib>Brannon, Jacob P ; Ramirez, Isaac ; Williams, DaShawn ; Barding, Gregory A ; Liu, Yan ; McCulloch, Kathryn M ; Chandrasekaran, Perumalreddy ; Stieber, S. Chantal E</creatorcontrib><description>Experimental methods for determining 3-D atomic structures, such as crystallography, are rarely taught in the undergraduate curriculum, yet are considered to be the norm for 3-D structure determination in a research setting. Although a fully physical understanding of crystallography takes years of practice, practical applications and basic interpretation of small-molecule crystallography can be readily integrated into undergraduate curricula to give students a research-like laboratory experience. Three 1-h crystallography laboratory modules were developed using the free Olex2 software to determine the structure of (dithiolene)2Co(1,3,5-triaza-7-phosphaadamantane)·dichloroethane, while introducing basic crystallography knowledge, crystal evaluation through microscopy, practical structure determination skills, and spatial awareness through 3-D printing. Following implementation in an advanced instrumental analysis class composed of 14 Master’s and undergraduate students, the increase of topical knowledge of small molecule crystallography was 18–30% based on tailored assessment surveys, and student feedback was highly positive. This suggests that students without a prior background in crystallography were able to learn and retain information about small molecule crystallography from these laboratory modules.</description><identifier>ISSN: 0021-9584</identifier><identifier>EISSN: 1938-1328</identifier><identifier>DOI: 10.1021/acs.jchemed.0c00206</identifier><language>eng</language><publisher>Easton: American Chemical Society and Division of Chemical Education, Inc</publisher><subject>3-D printers ; Analytical chemistry ; Chemistry ; College Science ; College Students ; Computer Peripherals ; Crystal structure ; Crystallography ; Curricula ; Deep structure ; Dichloroethane ; Experimental methods ; Feedback ; Inorganic Chemistry ; Instructional Effectiveness ; Laboratory Training ; Modules ; Molecular Structure ; Printing ; Science Instruction ; Students ; Teaching methods ; Three dimensional printing ; Undergraduate Students ; Undergraduate study</subject><ispartof>Journal of chemical education, 2020-08, Vol.97 (8), p.2273-2279</ispartof><rights>Copyright American Chemical Society Aug 11, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-42dd6f46e071bdb06a7335f1eb36c18278bfa70aea817a07bf6edb21546d6ce53</citedby><cites>FETCH-LOGICAL-a339t-42dd6f46e071bdb06a7335f1eb36c18278bfa70aea817a07bf6edb21546d6ce53</cites><orcidid>0000-0003-3778-207X ; 0000-0001-7786-127X ; 0000-0001-9077-3821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jchemed.0c00206$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jchemed.0c00206$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1269302$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Brannon, Jacob P</creatorcontrib><creatorcontrib>Ramirez, Isaac</creatorcontrib><creatorcontrib>Williams, DaShawn</creatorcontrib><creatorcontrib>Barding, Gregory A</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>McCulloch, Kathryn M</creatorcontrib><creatorcontrib>Chandrasekaran, Perumalreddy</creatorcontrib><creatorcontrib>Stieber, S. Chantal E</creatorcontrib><title>Teaching Crystallography by Determining Small Molecule Structures and 3‑D Printing: An Inorganic Chemistry Laboratory Module</title><title>Journal of chemical education</title><addtitle>J. Chem. Educ</addtitle><description>Experimental methods for determining 3-D atomic structures, such as crystallography, are rarely taught in the undergraduate curriculum, yet are considered to be the norm for 3-D structure determination in a research setting. Although a fully physical understanding of crystallography takes years of practice, practical applications and basic interpretation of small-molecule crystallography can be readily integrated into undergraduate curricula to give students a research-like laboratory experience. Three 1-h crystallography laboratory modules were developed using the free Olex2 software to determine the structure of (dithiolene)2Co(1,3,5-triaza-7-phosphaadamantane)·dichloroethane, while introducing basic crystallography knowledge, crystal evaluation through microscopy, practical structure determination skills, and spatial awareness through 3-D printing. Following implementation in an advanced instrumental analysis class composed of 14 Master’s and undergraduate students, the increase of topical knowledge of small molecule crystallography was 18–30% based on tailored assessment surveys, and student feedback was highly positive. This suggests that students without a prior background in crystallography were able to learn and retain information about small molecule crystallography from these laboratory modules.</description><subject>3-D printers</subject><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>College Science</subject><subject>College Students</subject><subject>Computer Peripherals</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Curricula</subject><subject>Deep structure</subject><subject>Dichloroethane</subject><subject>Experimental methods</subject><subject>Feedback</subject><subject>Inorganic Chemistry</subject><subject>Instructional Effectiveness</subject><subject>Laboratory Training</subject><subject>Modules</subject><subject>Molecular Structure</subject><subject>Printing</subject><subject>Science Instruction</subject><subject>Students</subject><subject>Teaching methods</subject><subject>Three dimensional printing</subject><subject>Undergraduate Students</subject><subject>Undergraduate study</subject><issn>0021-9584</issn><issn>1938-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAoRkiXWKH4mTsKvaAkVFIAHryHEmbao0LrazyAZxBa7ISXBJYclqrPkfY30InVMyooTRK6nsaK1WsIFiRBQhjIgDNKApTwLKWXKIBn5HgzRKwmN0Yu2aEMqiNBmg9xeQalU1SzwxnXWyrvXSyO2qw3mHp-DAbKpmJz9vvIYfdA2qrQE_O9Mq1xqwWDYF5l8fn1P8ZKrGefM1Hjd43mizlE2l8MR_rLLOdHghc22k0_75oAvfc4qOSllbONvPIXq9mb1M7oLF4-18Ml4EkvPUBSErClGGAkhM8yInQsacRyWFnAtFExYneSljIkEmNJYkzksBRc5oFIpCKIj4EF32vVuj31qwLlvr1jT-ZMZCLkIPiYfexXuXMtpaA2W2NdVGmi6jJNuBzjzobA8624P2qYs-BaZSf4nZPWUi5YR5_arXf8K_Z_9r_AbhU5BT</recordid><startdate>20200811</startdate><enddate>20200811</enddate><creator>Brannon, Jacob P</creator><creator>Ramirez, Isaac</creator><creator>Williams, DaShawn</creator><creator>Barding, Gregory A</creator><creator>Liu, Yan</creator><creator>McCulloch, Kathryn M</creator><creator>Chandrasekaran, Perumalreddy</creator><creator>Stieber, S. Chantal E</creator><general>American Chemical Society and Division of Chemical Education, Inc</general><general>Division of Chemical Education, Inc</general><general>American Chemical Society</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-3778-207X</orcidid><orcidid>https://orcid.org/0000-0001-7786-127X</orcidid><orcidid>https://orcid.org/0000-0001-9077-3821</orcidid></search><sort><creationdate>20200811</creationdate><title>Teaching Crystallography by Determining Small Molecule Structures and 3‑D Printing: An Inorganic Chemistry Laboratory Module</title><author>Brannon, Jacob P ; Ramirez, Isaac ; Williams, DaShawn ; Barding, Gregory A ; Liu, Yan ; McCulloch, Kathryn M ; Chandrasekaran, Perumalreddy ; Stieber, S. Chantal E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-42dd6f46e071bdb06a7335f1eb36c18278bfa70aea817a07bf6edb21546d6ce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>College Science</topic><topic>College Students</topic><topic>Computer Peripherals</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Curricula</topic><topic>Deep structure</topic><topic>Dichloroethane</topic><topic>Experimental methods</topic><topic>Feedback</topic><topic>Inorganic Chemistry</topic><topic>Instructional Effectiveness</topic><topic>Laboratory Training</topic><topic>Modules</topic><topic>Molecular Structure</topic><topic>Printing</topic><topic>Science Instruction</topic><topic>Students</topic><topic>Teaching methods</topic><topic>Three dimensional printing</topic><topic>Undergraduate Students</topic><topic>Undergraduate study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brannon, Jacob P</creatorcontrib><creatorcontrib>Ramirez, Isaac</creatorcontrib><creatorcontrib>Williams, DaShawn</creatorcontrib><creatorcontrib>Barding, Gregory A</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>McCulloch, Kathryn M</creatorcontrib><creatorcontrib>Chandrasekaran, Perumalreddy</creatorcontrib><creatorcontrib>Stieber, S. Chantal E</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of chemical education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brannon, Jacob P</au><au>Ramirez, Isaac</au><au>Williams, DaShawn</au><au>Barding, Gregory A</au><au>Liu, Yan</au><au>McCulloch, Kathryn M</au><au>Chandrasekaran, Perumalreddy</au><au>Stieber, S. Chantal E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1269302</ericid><atitle>Teaching Crystallography by Determining Small Molecule Structures and 3‑D Printing: An Inorganic Chemistry Laboratory Module</atitle><jtitle>Journal of chemical education</jtitle><addtitle>J. Chem. Educ</addtitle><date>2020-08-11</date><risdate>2020</risdate><volume>97</volume><issue>8</issue><spage>2273</spage><epage>2279</epage><pages>2273-2279</pages><issn>0021-9584</issn><eissn>1938-1328</eissn><abstract>Experimental methods for determining 3-D atomic structures, such as crystallography, are rarely taught in the undergraduate curriculum, yet are considered to be the norm for 3-D structure determination in a research setting. Although a fully physical understanding of crystallography takes years of practice, practical applications and basic interpretation of small-molecule crystallography can be readily integrated into undergraduate curricula to give students a research-like laboratory experience. Three 1-h crystallography laboratory modules were developed using the free Olex2 software to determine the structure of (dithiolene)2Co(1,3,5-triaza-7-phosphaadamantane)·dichloroethane, while introducing basic crystallography knowledge, crystal evaluation through microscopy, practical structure determination skills, and spatial awareness through 3-D printing. Following implementation in an advanced instrumental analysis class composed of 14 Master’s and undergraduate students, the increase of topical knowledge of small molecule crystallography was 18–30% based on tailored assessment surveys, and student feedback was highly positive. This suggests that students without a prior background in crystallography were able to learn and retain information about small molecule crystallography from these laboratory modules.</abstract><cop>Easton</cop><pub>American Chemical Society and Division of Chemical Education, Inc</pub><doi>10.1021/acs.jchemed.0c00206</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3778-207X</orcidid><orcidid>https://orcid.org/0000-0001-7786-127X</orcidid><orcidid>https://orcid.org/0000-0001-9077-3821</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9584 |
ispartof | Journal of chemical education, 2020-08, Vol.97 (8), p.2273-2279 |
issn | 0021-9584 1938-1328 |
language | eng |
recordid | cdi_proquest_journals_2436432834 |
source | American Chemical Society Journals |
subjects | 3-D printers Analytical chemistry Chemistry College Science College Students Computer Peripherals Crystal structure Crystallography Curricula Deep structure Dichloroethane Experimental methods Feedback Inorganic Chemistry Instructional Effectiveness Laboratory Training Modules Molecular Structure Printing Science Instruction Students Teaching methods Three dimensional printing Undergraduate Students Undergraduate study |
title | Teaching Crystallography by Determining Small Molecule Structures and 3‑D Printing: An Inorganic Chemistry Laboratory Module |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teaching%20Crystallography%20by%20Determining%20Small%20Molecule%20Structures%20and%203%E2%80%91D%20Printing:%20An%20Inorganic%20Chemistry%20Laboratory%20Module&rft.jtitle=Journal%20of%20chemical%20education&rft.au=Brannon,%20Jacob%20P&rft.date=2020-08-11&rft.volume=97&rft.issue=8&rft.spage=2273&rft.epage=2279&rft.pages=2273-2279&rft.issn=0021-9584&rft.eissn=1938-1328&rft_id=info:doi/10.1021/acs.jchemed.0c00206&rft_dat=%3Cproquest_cross%3E2436432834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436432834&rft_id=info:pmid/&rft_ericid=EJ1269302&rfr_iscdi=true |