Extended Adjacency and Scale-Dependent Graph Fourier Transform via Diffusion Distances
This article proposes the augmentation of the adjacency model of networks for graph signal processing. It is assumed that no information about the network is available, apart from the initial adjacency matrix. In the proposed model, additional edges are created according to a Markov relation imposed...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal and information processing over networks 2020, Vol.6, p.592-604 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 604 |
---|---|
container_issue | |
container_start_page | 592 |
container_title | IEEE transactions on signal and information processing over networks |
container_volume | 6 |
creator | M. Elias, Vitor R. Martins, Wallace A. Werner, Stefan |
description | This article proposes the augmentation of the adjacency model of networks for graph signal processing. It is assumed that no information about the network is available, apart from the initial adjacency matrix. In the proposed model, additional edges are created according to a Markov relation imposed between nodes. This information is incorporated into the extended-adjacency matrix as a function of the diffusion distance between nodes. The diffusion distance measures similarities between nodes at a certain diffusion scale or time, and is a metric adopted from diffusion maps. Similarly, the proposed extended-adjacency matrix depends on the diffusion scale, which enables the definition of a scale-dependent graph Fourier transform. We conduct theoretical analyses of both the extended adjacency and the corresponding graph Fourier transform and show that different diffusion scales lead to different graph-frequency perspectives. At different scales, the transform discriminates shifted ranges of signal variations across the graph, revealing more information on the graph signal when compared to traditional approaches. The scale-dependent graph Fourier transform is applied for anomaly detection and is shown to outperform the conventional graph Fourier transform. |
doi_str_mv | 10.1109/TSIPN.2020.3015341 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2436410175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9165200</ieee_id><sourcerecordid>2436410175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-ad1d65972a8d625574244b09abfb0ae08a2711f99a8158646eb4e2765c9ac3123</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOOb-AX0J-NyZrybN49iXg6HCpvgWbtMUO7a0Jp24_97ODfHpHrjn3Hv4IXRLyZBSoh_Wq8XL05ARRoac0JQLeoF6jCueKCXfL__pazSIcUNI51JCad1Db9Pv1vnCFXhUbMA6bw8YfIFXFrYumbjmuPQtngdoPvCs3ofKBbwO4GNZhx3-qgBPqrLcx6r2nYoteOviDboqYRvd4Dz76HU2XY8fk-XzfDEeLRPLuW4TKGghU60YZIVkaVeKCZETDXmZE3AkA6YoLbWGjKaZFNLlwjElU6vBcsp4H92f7jah_ty72JpNV9F3Lw0TXApKqEo7Fzu5bKhjDK40Tah2EA6GEnNEaH4RmiNCc0bYhe5Ooco59xfQVKaMEP4DqVFsUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436410175</pqid></control><display><type>article</type><title>Extended Adjacency and Scale-Dependent Graph Fourier Transform via Diffusion Distances</title><source>IEEE Electronic Library (IEL)</source><creator>M. Elias, Vitor R. ; Martins, Wallace A. ; Werner, Stefan</creator><creatorcontrib>M. Elias, Vitor R. ; Martins, Wallace A. ; Werner, Stefan</creatorcontrib><description>This article proposes the augmentation of the adjacency model of networks for graph signal processing. It is assumed that no information about the network is available, apart from the initial adjacency matrix. In the proposed model, additional edges are created according to a Markov relation imposed between nodes. This information is incorporated into the extended-adjacency matrix as a function of the diffusion distance between nodes. The diffusion distance measures similarities between nodes at a certain diffusion scale or time, and is a metric adopted from diffusion maps. Similarly, the proposed extended-adjacency matrix depends on the diffusion scale, which enables the definition of a scale-dependent graph Fourier transform. We conduct theoretical analyses of both the extended adjacency and the corresponding graph Fourier transform and show that different diffusion scales lead to different graph-frequency perspectives. At different scales, the transform discriminates shifted ranges of signal variations across the graph, revealing more information on the graph signal when compared to traditional approaches. The scale-dependent graph Fourier transform is applied for anomaly detection and is shown to outperform the conventional graph Fourier transform.</description><identifier>ISSN: 2373-776X</identifier><identifier>EISSN: 2373-776X</identifier><identifier>EISSN: 2373-7778</identifier><identifier>DOI: 10.1109/TSIPN.2020.3015341</identifier><identifier>CODEN: ITSIBW</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Diffusion ; Diffusion distances ; diffusion maps ; Distance measurement ; extended adjacency ; Fourier transforms ; graph signal processing ; Laplace equations ; Markov processes ; Nodes ; scale-dependent graph Fourier transform ; Sensors ; Signal processing ; Symmetric matrices</subject><ispartof>IEEE transactions on signal and information processing over networks, 2020, Vol.6, p.592-604</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-ad1d65972a8d625574244b09abfb0ae08a2711f99a8158646eb4e2765c9ac3123</citedby><cites>FETCH-LOGICAL-c339t-ad1d65972a8d625574244b09abfb0ae08a2711f99a8158646eb4e2765c9ac3123</cites><orcidid>0000-0002-5865-1223 ; 0000-0003-0148-4724 ; 0000-0002-3788-2794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9165200$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9165200$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>M. Elias, Vitor R.</creatorcontrib><creatorcontrib>Martins, Wallace A.</creatorcontrib><creatorcontrib>Werner, Stefan</creatorcontrib><title>Extended Adjacency and Scale-Dependent Graph Fourier Transform via Diffusion Distances</title><title>IEEE transactions on signal and information processing over networks</title><addtitle>TSIPN</addtitle><description>This article proposes the augmentation of the adjacency model of networks for graph signal processing. It is assumed that no information about the network is available, apart from the initial adjacency matrix. In the proposed model, additional edges are created according to a Markov relation imposed between nodes. This information is incorporated into the extended-adjacency matrix as a function of the diffusion distance between nodes. The diffusion distance measures similarities between nodes at a certain diffusion scale or time, and is a metric adopted from diffusion maps. Similarly, the proposed extended-adjacency matrix depends on the diffusion scale, which enables the definition of a scale-dependent graph Fourier transform. We conduct theoretical analyses of both the extended adjacency and the corresponding graph Fourier transform and show that different diffusion scales lead to different graph-frequency perspectives. At different scales, the transform discriminates shifted ranges of signal variations across the graph, revealing more information on the graph signal when compared to traditional approaches. The scale-dependent graph Fourier transform is applied for anomaly detection and is shown to outperform the conventional graph Fourier transform.</description><subject>Anomalies</subject><subject>Diffusion</subject><subject>Diffusion distances</subject><subject>diffusion maps</subject><subject>Distance measurement</subject><subject>extended adjacency</subject><subject>Fourier transforms</subject><subject>graph signal processing</subject><subject>Laplace equations</subject><subject>Markov processes</subject><subject>Nodes</subject><subject>scale-dependent graph Fourier transform</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Symmetric matrices</subject><issn>2373-776X</issn><issn>2373-776X</issn><issn>2373-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1LwzAUxYMoOOb-AX0J-NyZrybN49iXg6HCpvgWbtMUO7a0Jp24_97ODfHpHrjn3Hv4IXRLyZBSoh_Wq8XL05ARRoac0JQLeoF6jCueKCXfL__pazSIcUNI51JCad1Db9Pv1vnCFXhUbMA6bw8YfIFXFrYumbjmuPQtngdoPvCs3ofKBbwO4GNZhx3-qgBPqrLcx6r2nYoteOviDboqYRvd4Dz76HU2XY8fk-XzfDEeLRPLuW4TKGghU60YZIVkaVeKCZETDXmZE3AkA6YoLbWGjKaZFNLlwjElU6vBcsp4H92f7jah_ty72JpNV9F3Lw0TXApKqEo7Fzu5bKhjDK40Tah2EA6GEnNEaH4RmiNCc0bYhe5Ooco59xfQVKaMEP4DqVFsUA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>M. Elias, Vitor R.</creator><creator>Martins, Wallace A.</creator><creator>Werner, Stefan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5865-1223</orcidid><orcidid>https://orcid.org/0000-0003-0148-4724</orcidid><orcidid>https://orcid.org/0000-0002-3788-2794</orcidid></search><sort><creationdate>2020</creationdate><title>Extended Adjacency and Scale-Dependent Graph Fourier Transform via Diffusion Distances</title><author>M. Elias, Vitor R. ; Martins, Wallace A. ; Werner, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-ad1d65972a8d625574244b09abfb0ae08a2711f99a8158646eb4e2765c9ac3123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Diffusion</topic><topic>Diffusion distances</topic><topic>diffusion maps</topic><topic>Distance measurement</topic><topic>extended adjacency</topic><topic>Fourier transforms</topic><topic>graph signal processing</topic><topic>Laplace equations</topic><topic>Markov processes</topic><topic>Nodes</topic><topic>scale-dependent graph Fourier transform</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Symmetric matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M. Elias, Vitor R.</creatorcontrib><creatorcontrib>Martins, Wallace A.</creatorcontrib><creatorcontrib>Werner, Stefan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on signal and information processing over networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>M. Elias, Vitor R.</au><au>Martins, Wallace A.</au><au>Werner, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Adjacency and Scale-Dependent Graph Fourier Transform via Diffusion Distances</atitle><jtitle>IEEE transactions on signal and information processing over networks</jtitle><stitle>TSIPN</stitle><date>2020</date><risdate>2020</risdate><volume>6</volume><spage>592</spage><epage>604</epage><pages>592-604</pages><issn>2373-776X</issn><eissn>2373-776X</eissn><eissn>2373-7778</eissn><coden>ITSIBW</coden><abstract>This article proposes the augmentation of the adjacency model of networks for graph signal processing. It is assumed that no information about the network is available, apart from the initial adjacency matrix. In the proposed model, additional edges are created according to a Markov relation imposed between nodes. This information is incorporated into the extended-adjacency matrix as a function of the diffusion distance between nodes. The diffusion distance measures similarities between nodes at a certain diffusion scale or time, and is a metric adopted from diffusion maps. Similarly, the proposed extended-adjacency matrix depends on the diffusion scale, which enables the definition of a scale-dependent graph Fourier transform. We conduct theoretical analyses of both the extended adjacency and the corresponding graph Fourier transform and show that different diffusion scales lead to different graph-frequency perspectives. At different scales, the transform discriminates shifted ranges of signal variations across the graph, revealing more information on the graph signal when compared to traditional approaches. The scale-dependent graph Fourier transform is applied for anomaly detection and is shown to outperform the conventional graph Fourier transform.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSIPN.2020.3015341</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5865-1223</orcidid><orcidid>https://orcid.org/0000-0003-0148-4724</orcidid><orcidid>https://orcid.org/0000-0002-3788-2794</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2373-776X |
ispartof | IEEE transactions on signal and information processing over networks, 2020, Vol.6, p.592-604 |
issn | 2373-776X 2373-776X 2373-7778 |
language | eng |
recordid | cdi_proquest_journals_2436410175 |
source | IEEE Electronic Library (IEL) |
subjects | Anomalies Diffusion Diffusion distances diffusion maps Distance measurement extended adjacency Fourier transforms graph signal processing Laplace equations Markov processes Nodes scale-dependent graph Fourier transform Sensors Signal processing Symmetric matrices |
title | Extended Adjacency and Scale-Dependent Graph Fourier Transform via Diffusion Distances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Adjacency%20and%20Scale-Dependent%20Graph%20Fourier%20Transform%20via%20Diffusion%20Distances&rft.jtitle=IEEE%20transactions%20on%20signal%20and%20information%20processing%20over%20networks&rft.au=M.%20Elias,%20Vitor%20R.&rft.date=2020&rft.volume=6&rft.spage=592&rft.epage=604&rft.pages=592-604&rft.issn=2373-776X&rft.eissn=2373-776X&rft.coden=ITSIBW&rft_id=info:doi/10.1109/TSIPN.2020.3015341&rft_dat=%3Cproquest_RIE%3E2436410175%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436410175&rft_id=info:pmid/&rft_ieee_id=9165200&rfr_iscdi=true |