Multi-objective global optimum design of collaborative robots

Optimum design is proven significant for improving task performances of robotic manipulators under certain constraints. However, when it is utilized for collaborative robots (Cobots), there are still many challenges such as complex smooth surface links, time-varying kinematic configurations, computa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2020-09, Vol.62 (3), p.1547-1561
Hauptverfasser: Hu, Mingwei, Wang, Hongguang, Pan, Xinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1561
container_issue 3
container_start_page 1547
container_title Structural and multidisciplinary optimization
container_volume 62
creator Hu, Mingwei
Wang, Hongguang
Pan, Xinan
description Optimum design is proven significant for improving task performances of robotic manipulators under certain constraints. However, when it is utilized for collaborative robots (Cobots), there are still many challenges such as complex smooth surface links, time-varying kinematic configurations, computational expensiveness, and nonstructural parameter optimization. Therefore, based on orthogonal design experiment (ODE) and finite element substructure method (FESM), a multi-objective optimum design method of Cobots is proposed with the structural dimensions and parameterized joint components as the optimization variables and the natural frequency, the Cartesian stiffness, and the mass of the robot as optimization objectives. Firstly, to obtain multiple global performance indexes (GPIs) of robots in real-time and efficiently, the FESM model of Cobots is established which can preserve the accuracy of the finite element method (FEM) while ensuring the computational efficiency. Then, the gray relational analysis method (GRAM) is used to construct the multi-objective optimization function which includes the global first-order natural frequency index (GFNFI), the global elastic deformation index (GEDI), and the mass of robots. The ODE is constructed, and the structural dimensions and parameterized joint components are taken as influencing factors. According to the orthogonal array (OA), the degree of gray incidence under different levels of influencing factors is solved. And the optimal combination of influencing factor levels is obtained by range analysis (RA), which is used to guide the design of Cobots. Finally, a Cobot SHIR5-I is taken as an illustrative example to perform optimum design in this paper.
doi_str_mv 10.1007/s00158-020-02563-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436219140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436219140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-537a1c7f4e3b4db8541ecf029c43918b9a883364bebdf88335055aa5505f917b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNOC59X3NslucvAgxX9Q8aLgLSRpUrZsm5rsin57067ozcNj5vCbeTCEnCNcIkBzlQCQixIqyMdrWn4ekAnWyEtkQhz--ubtmJyktAIAAUxOyPXT0PVtGczK2b79cMWyC0Z3Rdj27XpYFwuX2uWmCL6woeu0CVHvsRhM6NMpOfK6S-7sR6fk9e72ZfZQzp_vH2c389JSlH3JaaPRNp45atjCCM7QWQ-VtIxKFEZqISitmXFm4XeWA-da8yxeYmPolFyMvdsY3geXerUKQ9zkl6pitK5QIoNMVSNlY0gpOq-2sV3r-KUQ1G4mNc6k8kxqP5P6zCE6hlKGN0sX_6r_SX0DKUhq0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436219140</pqid></control><display><type>article</type><title>Multi-objective global optimum design of collaborative robots</title><source>SpringerLink Journals</source><creator>Hu, Mingwei ; Wang, Hongguang ; Pan, Xinan</creator><creatorcontrib>Hu, Mingwei ; Wang, Hongguang ; Pan, Xinan</creatorcontrib><description>Optimum design is proven significant for improving task performances of robotic manipulators under certain constraints. However, when it is utilized for collaborative robots (Cobots), there are still many challenges such as complex smooth surface links, time-varying kinematic configurations, computational expensiveness, and nonstructural parameter optimization. Therefore, based on orthogonal design experiment (ODE) and finite element substructure method (FESM), a multi-objective optimum design method of Cobots is proposed with the structural dimensions and parameterized joint components as the optimization variables and the natural frequency, the Cartesian stiffness, and the mass of the robot as optimization objectives. Firstly, to obtain multiple global performance indexes (GPIs) of robots in real-time and efficiently, the FESM model of Cobots is established which can preserve the accuracy of the finite element method (FEM) while ensuring the computational efficiency. Then, the gray relational analysis method (GRAM) is used to construct the multi-objective optimization function which includes the global first-order natural frequency index (GFNFI), the global elastic deformation index (GEDI), and the mass of robots. The ODE is constructed, and the structural dimensions and parameterized joint components are taken as influencing factors. According to the orthogonal array (OA), the degree of gray incidence under different levels of influencing factors is solved. And the optimal combination of influencing factor levels is obtained by range analysis (RA), which is used to guide the design of Cobots. Finally, a Cobot SHIR5-I is taken as an illustrative example to perform optimum design in this paper.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-020-02563-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cartesian coordinates ; Collaboration ; Computational Mathematics and Numerical Analysis ; Construction ; Design optimization ; Elastic deformation ; Engineering ; Engineering Design ; Finite element method ; Industrial Application Paper ; Multiple objective analysis ; Optimization ; Orthogonal arrays ; Parameterization ; Performance enhancement ; Performance indices ; Resonant frequencies ; Robot arms ; Robots ; Stiffness ; Substructures ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2020-09, Vol.62 (3), p.1547-1561</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-537a1c7f4e3b4db8541ecf029c43918b9a883364bebdf88335055aa5505f917b3</citedby><cites>FETCH-LOGICAL-c319t-537a1c7f4e3b4db8541ecf029c43918b9a883364bebdf88335055aa5505f917b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-020-02563-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-020-02563-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hu, Mingwei</creatorcontrib><creatorcontrib>Wang, Hongguang</creatorcontrib><creatorcontrib>Pan, Xinan</creatorcontrib><title>Multi-objective global optimum design of collaborative robots</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Optimum design is proven significant for improving task performances of robotic manipulators under certain constraints. However, when it is utilized for collaborative robots (Cobots), there are still many challenges such as complex smooth surface links, time-varying kinematic configurations, computational expensiveness, and nonstructural parameter optimization. Therefore, based on orthogonal design experiment (ODE) and finite element substructure method (FESM), a multi-objective optimum design method of Cobots is proposed with the structural dimensions and parameterized joint components as the optimization variables and the natural frequency, the Cartesian stiffness, and the mass of the robot as optimization objectives. Firstly, to obtain multiple global performance indexes (GPIs) of robots in real-time and efficiently, the FESM model of Cobots is established which can preserve the accuracy of the finite element method (FEM) while ensuring the computational efficiency. Then, the gray relational analysis method (GRAM) is used to construct the multi-objective optimization function which includes the global first-order natural frequency index (GFNFI), the global elastic deformation index (GEDI), and the mass of robots. The ODE is constructed, and the structural dimensions and parameterized joint components are taken as influencing factors. According to the orthogonal array (OA), the degree of gray incidence under different levels of influencing factors is solved. And the optimal combination of influencing factor levels is obtained by range analysis (RA), which is used to guide the design of Cobots. Finally, a Cobot SHIR5-I is taken as an illustrative example to perform optimum design in this paper.</description><subject>Cartesian coordinates</subject><subject>Collaboration</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Construction</subject><subject>Design optimization</subject><subject>Elastic deformation</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Industrial Application Paper</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Orthogonal arrays</subject><subject>Parameterization</subject><subject>Performance enhancement</subject><subject>Performance indices</subject><subject>Resonant frequencies</subject><subject>Robot arms</subject><subject>Robots</subject><subject>Stiffness</subject><subject>Substructures</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LAzEUxIMoWKtfwNOC59X3NslucvAgxX9Q8aLgLSRpUrZsm5rsin57067ozcNj5vCbeTCEnCNcIkBzlQCQixIqyMdrWn4ekAnWyEtkQhz--ubtmJyktAIAAUxOyPXT0PVtGczK2b79cMWyC0Z3Rdj27XpYFwuX2uWmCL6woeu0CVHvsRhM6NMpOfK6S-7sR6fk9e72ZfZQzp_vH2c389JSlH3JaaPRNp45atjCCM7QWQ-VtIxKFEZqISitmXFm4XeWA-da8yxeYmPolFyMvdsY3geXerUKQ9zkl6pitK5QIoNMVSNlY0gpOq-2sV3r-KUQ1G4mNc6k8kxqP5P6zCE6hlKGN0sX_6r_SX0DKUhq0A</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Hu, Mingwei</creator><creator>Wang, Hongguang</creator><creator>Pan, Xinan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200901</creationdate><title>Multi-objective global optimum design of collaborative robots</title><author>Hu, Mingwei ; Wang, Hongguang ; Pan, Xinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-537a1c7f4e3b4db8541ecf029c43918b9a883364bebdf88335055aa5505f917b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cartesian coordinates</topic><topic>Collaboration</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Construction</topic><topic>Design optimization</topic><topic>Elastic deformation</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Industrial Application Paper</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Orthogonal arrays</topic><topic>Parameterization</topic><topic>Performance enhancement</topic><topic>Performance indices</topic><topic>Resonant frequencies</topic><topic>Robot arms</topic><topic>Robots</topic><topic>Stiffness</topic><topic>Substructures</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Mingwei</creatorcontrib><creatorcontrib>Wang, Hongguang</creatorcontrib><creatorcontrib>Pan, Xinan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Mingwei</au><au>Wang, Hongguang</au><au>Pan, Xinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective global optimum design of collaborative robots</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>62</volume><issue>3</issue><spage>1547</spage><epage>1561</epage><pages>1547-1561</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Optimum design is proven significant for improving task performances of robotic manipulators under certain constraints. However, when it is utilized for collaborative robots (Cobots), there are still many challenges such as complex smooth surface links, time-varying kinematic configurations, computational expensiveness, and nonstructural parameter optimization. Therefore, based on orthogonal design experiment (ODE) and finite element substructure method (FESM), a multi-objective optimum design method of Cobots is proposed with the structural dimensions and parameterized joint components as the optimization variables and the natural frequency, the Cartesian stiffness, and the mass of the robot as optimization objectives. Firstly, to obtain multiple global performance indexes (GPIs) of robots in real-time and efficiently, the FESM model of Cobots is established which can preserve the accuracy of the finite element method (FEM) while ensuring the computational efficiency. Then, the gray relational analysis method (GRAM) is used to construct the multi-objective optimization function which includes the global first-order natural frequency index (GFNFI), the global elastic deformation index (GEDI), and the mass of robots. The ODE is constructed, and the structural dimensions and parameterized joint components are taken as influencing factors. According to the orthogonal array (OA), the degree of gray incidence under different levels of influencing factors is solved. And the optimal combination of influencing factor levels is obtained by range analysis (RA), which is used to guide the design of Cobots. Finally, a Cobot SHIR5-I is taken as an illustrative example to perform optimum design in this paper.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-020-02563-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2020-09, Vol.62 (3), p.1547-1561
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2436219140
source SpringerLink Journals
subjects Cartesian coordinates
Collaboration
Computational Mathematics and Numerical Analysis
Construction
Design optimization
Elastic deformation
Engineering
Engineering Design
Finite element method
Industrial Application Paper
Multiple objective analysis
Optimization
Orthogonal arrays
Parameterization
Performance enhancement
Performance indices
Resonant frequencies
Robot arms
Robots
Stiffness
Substructures
Theoretical and Applied Mechanics
title Multi-objective global optimum design of collaborative robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20global%20optimum%20design%20of%20collaborative%20robots&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Hu,%20Mingwei&rft.date=2020-09-01&rft.volume=62&rft.issue=3&rft.spage=1547&rft.epage=1561&rft.pages=1547-1561&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-020-02563-x&rft_dat=%3Cproquest_cross%3E2436219140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436219140&rft_id=info:pmid/&rfr_iscdi=true