Optimal Detection of Bilinear Dependence in Short Panels of Regression Data

In this paper, we propose parametric and nonparametric locally andasymptotically optimal tests for regression models with superdiagonal bilinear time series errors in short panel data (large n, small T). We establish a local asymptotic normality property– with respect to intercept μ, regression coef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista Colombiana de estadística 2020-07, Vol.43 (2), p.143-171
Hauptverfasser: Lmakri, Aziz, Akharif, Abdelhadi, Mellouk, Amal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 2
container_start_page 143
container_title Revista Colombiana de estadística
container_volume 43
creator Lmakri, Aziz
Akharif, Abdelhadi
Mellouk, Amal
description In this paper, we propose parametric and nonparametric locally andasymptotically optimal tests for regression models with superdiagonal bilinear time series errors in short panel data (large n, small T). We establish a local asymptotic normality property– with respect to intercept μ, regression coefficient β, the scale parameter σ of the error, and the parameter b of panel superdiagonal bilinear model (which is the parameter of interest)– for a given density f1 of the error terms. Rank-based versions of optimal parametric tests are provided. This result, which allows, by Hájek’s representation theorem, the construction of locally asymptotically optimal rank-based tests for the null hypothesis b = 0 (absence of panel superdiagonal bilinear model). These tests –at specified innovation densities f1– are optimal (most stringent), but remain valid under any actual underlying density. From contiguity, we obtain the limiting distribution of our test statistics under the null and local sequences of alternatives. The asymptotic relative efficiencies, with respect to the pseudo-Gaussian parametric tests, are derived. A Monte Carlo study confirms the good performance of the proposed tests.
doi_str_mv 10.15446/rce.v43n2.83044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436139642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436139642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-79c4e672551e19a715bbc0a56e767a4f7cd0d2bea4edd910657cc9ddbb9338ee3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKt3jwuet-Y7m6O2VsVCxY9zyCazumXNrkkq-O_dtp4GXp6Zl3kQuiR4RgTn8jo6mP1wFuisYpjzIzShrNJlpZU8RhNMKC6JEuQUnaW0wVhWkpIJeloPuf2yXbGADC63fSj6prhtuzaAjWM6QPAQHBRtKF4_-5iLZxugSzvsBT4ipLRbWthsz9FJY7sEF_9zit6Xd2_zh3K1vn-c36xKR6nIpdKOg1RUCAJEW0VEXTtshQQlleWNch57WoPl4L0mWArlnPa-rjVjFQCboqvD3SH231tI2Wz6bQxjpaGcScK05HSk8IFysU8pQmOGOH4afw3BZq_MjMrMXpnZK2N_IBdgCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436139642</pqid></control><display><type>article</type><title>Optimal Detection of Bilinear Dependence in Short Panels of Regression Data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lmakri, Aziz ; Akharif, Abdelhadi ; Mellouk, Amal</creator><creatorcontrib>Lmakri, Aziz ; Akharif, Abdelhadi ; Mellouk, Amal</creatorcontrib><description>In this paper, we propose parametric and nonparametric locally andasymptotically optimal tests for regression models with superdiagonal bilinear time series errors in short panel data (large n, small T). We establish a local asymptotic normality property– with respect to intercept μ, regression coefficient β, the scale parameter σ of the error, and the parameter b of panel superdiagonal bilinear model (which is the parameter of interest)– for a given density f1 of the error terms. Rank-based versions of optimal parametric tests are provided. This result, which allows, by Hájek’s representation theorem, the construction of locally asymptotically optimal rank-based tests for the null hypothesis b = 0 (absence of panel superdiagonal bilinear model). These tests –at specified innovation densities f1– are optimal (most stringent), but remain valid under any actual underlying density. From contiguity, we obtain the limiting distribution of our test statistics under the null and local sequences of alternatives. The asymptotic relative efficiencies, with respect to the pseudo-Gaussian parametric tests, are derived. A Monte Carlo study confirms the good performance of the proposed tests.</description><identifier>ISSN: 0120-1751</identifier><identifier>EISSN: 2389-8976</identifier><identifier>DOI: 10.15446/rce.v43n2.83044</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>Asymptotic properties ; Computer simulation ; Density ; Longitudinal studies ; Model testing ; Normality ; Parameters ; Regression coefficients ; Regression models ; Sequences ; Statistical tests</subject><ispartof>Revista Colombiana de estadística, 2020-07, Vol.43 (2), p.143-171</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-79c4e672551e19a715bbc0a56e767a4f7cd0d2bea4edd910657cc9ddbb9338ee3</citedby><cites>FETCH-LOGICAL-c225t-79c4e672551e19a715bbc0a56e767a4f7cd0d2bea4edd910657cc9ddbb9338ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lmakri, Aziz</creatorcontrib><creatorcontrib>Akharif, Abdelhadi</creatorcontrib><creatorcontrib>Mellouk, Amal</creatorcontrib><title>Optimal Detection of Bilinear Dependence in Short Panels of Regression Data</title><title>Revista Colombiana de estadística</title><description>In this paper, we propose parametric and nonparametric locally andasymptotically optimal tests for regression models with superdiagonal bilinear time series errors in short panel data (large n, small T). We establish a local asymptotic normality property– with respect to intercept μ, regression coefficient β, the scale parameter σ of the error, and the parameter b of panel superdiagonal bilinear model (which is the parameter of interest)– for a given density f1 of the error terms. Rank-based versions of optimal parametric tests are provided. This result, which allows, by Hájek’s representation theorem, the construction of locally asymptotically optimal rank-based tests for the null hypothesis b = 0 (absence of panel superdiagonal bilinear model). These tests –at specified innovation densities f1– are optimal (most stringent), but remain valid under any actual underlying density. From contiguity, we obtain the limiting distribution of our test statistics under the null and local sequences of alternatives. The asymptotic relative efficiencies, with respect to the pseudo-Gaussian parametric tests, are derived. A Monte Carlo study confirms the good performance of the proposed tests.</description><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Longitudinal studies</subject><subject>Model testing</subject><subject>Normality</subject><subject>Parameters</subject><subject>Regression coefficients</subject><subject>Regression models</subject><subject>Sequences</subject><subject>Statistical tests</subject><issn>0120-1751</issn><issn>2389-8976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEQhoMoWKt3jwuet-Y7m6O2VsVCxY9zyCazumXNrkkq-O_dtp4GXp6Zl3kQuiR4RgTn8jo6mP1wFuisYpjzIzShrNJlpZU8RhNMKC6JEuQUnaW0wVhWkpIJeloPuf2yXbGADC63fSj6prhtuzaAjWM6QPAQHBRtKF4_-5iLZxugSzvsBT4ipLRbWthsz9FJY7sEF_9zit6Xd2_zh3K1vn-c36xKR6nIpdKOg1RUCAJEW0VEXTtshQQlleWNch57WoPl4L0mWArlnPa-rjVjFQCboqvD3SH231tI2Wz6bQxjpaGcScK05HSk8IFysU8pQmOGOH4afw3BZq_MjMrMXpnZK2N_IBdgCQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Lmakri, Aziz</creator><creator>Akharif, Abdelhadi</creator><creator>Mellouk, Amal</creator><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200701</creationdate><title>Optimal Detection of Bilinear Dependence in Short Panels of Regression Data</title><author>Lmakri, Aziz ; Akharif, Abdelhadi ; Mellouk, Amal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-79c4e672551e19a715bbc0a56e767a4f7cd0d2bea4edd910657cc9ddbb9338ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Longitudinal studies</topic><topic>Model testing</topic><topic>Normality</topic><topic>Parameters</topic><topic>Regression coefficients</topic><topic>Regression models</topic><topic>Sequences</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lmakri, Aziz</creatorcontrib><creatorcontrib>Akharif, Abdelhadi</creatorcontrib><creatorcontrib>Mellouk, Amal</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Revista Colombiana de estadística</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lmakri, Aziz</au><au>Akharif, Abdelhadi</au><au>Mellouk, Amal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Detection of Bilinear Dependence in Short Panels of Regression Data</atitle><jtitle>Revista Colombiana de estadística</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>43</volume><issue>2</issue><spage>143</spage><epage>171</epage><pages>143-171</pages><issn>0120-1751</issn><eissn>2389-8976</eissn><abstract>In this paper, we propose parametric and nonparametric locally andasymptotically optimal tests for regression models with superdiagonal bilinear time series errors in short panel data (large n, small T). We establish a local asymptotic normality property– with respect to intercept μ, regression coefficient β, the scale parameter σ of the error, and the parameter b of panel superdiagonal bilinear model (which is the parameter of interest)– for a given density f1 of the error terms. Rank-based versions of optimal parametric tests are provided. This result, which allows, by Hájek’s representation theorem, the construction of locally asymptotically optimal rank-based tests for the null hypothesis b = 0 (absence of panel superdiagonal bilinear model). These tests –at specified innovation densities f1– are optimal (most stringent), but remain valid under any actual underlying density. From contiguity, we obtain the limiting distribution of our test statistics under the null and local sequences of alternatives. The asymptotic relative efficiencies, with respect to the pseudo-Gaussian parametric tests, are derived. A Monte Carlo study confirms the good performance of the proposed tests.</abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/rce.v43n2.83044</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0120-1751
ispartof Revista Colombiana de estadística, 2020-07, Vol.43 (2), p.143-171
issn 0120-1751
2389-8976
language eng
recordid cdi_proquest_journals_2436139642
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Asymptotic properties
Computer simulation
Density
Longitudinal studies
Model testing
Normality
Parameters
Regression coefficients
Regression models
Sequences
Statistical tests
title Optimal Detection of Bilinear Dependence in Short Panels of Regression Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Detection%20of%20Bilinear%20Dependence%20in%20Short%20Panels%20of%20Regression%20Data&rft.jtitle=Revista%20Colombiana%20de%20estadi%CC%81stica&rft.au=Lmakri,%20Aziz&rft.date=2020-07-01&rft.volume=43&rft.issue=2&rft.spage=143&rft.epage=171&rft.pages=143-171&rft.issn=0120-1751&rft.eissn=2389-8976&rft_id=info:doi/10.15446/rce.v43n2.83044&rft_dat=%3Cproquest_cross%3E2436139642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436139642&rft_id=info:pmid/&rfr_iscdi=true