Rapid and even spreading of complex fluids over a large area in porous substrates
Rapid and even spreading of complex fluids over a large area on substrates like paper is required for chemical and biological sensing applications. Non-Newtonian flow behavior and the presence of multi-phase components pose a significant challenge to uniform flow in porous media. Specifically in the...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-08, Vol.117 (7) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 117 |
creator | Agrawal, Prashant Kumar, Hemant Kumar, Prasoon |
description | Rapid and even spreading of complex fluids over a large area on substrates like paper is required for chemical and biological sensing applications. Non-Newtonian flow behavior and the presence of multi-phase components pose a significant challenge to uniform flow in porous media. Specifically in the case of blood, for biosensing applications, fast spread on a large area is required to avoid coagulation and non-uniform component spread. In this work, we have developed a filter paper-based device to resolve this spreading challenge. We sandwich the filter paper between a matrix of nanofibrous membrane backed by polyethylene terephthalate (PET) sheets, forming a multi-scale porous network: one within the filter paper and the other between the PET sheet and the filter paper. By doing so, we decrease the overall resistance to flow while maintaining the same capillary suction pressure to obtain a quick, uniform spread of dyed liquids, milk solutions, and whole blood. The device design and concepts used here can be used in paper microfluidic applications and to develop devices for dried blood spot analysis, which utilize this fast flow while maintaining even spreading over a large area. |
doi_str_mv | 10.1063/5.0019939 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435918736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435918736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6d76c14d1a303ea19203ad3d62a2a475623197740a9d04d12cafaa25bf89c22f3</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYmuROMs1Sin9QEEXX4XaSlJTpZExmir69Iy24d3U48HEvHEIuOZtxpuBWzhjjWoM-IhPOqqoAzufHZMIYg0JpyU_JWc6bsUoBMCGvb9gFS7G11O1cS3OXHNrQrmn0tI7brnFf1DdDsJnGnUsUaYNp7SiOjoaWdjHFIdM8rHKfsHf5nJx4bLK7OOSUfDzcvy-eiuXL4_PiblnUoERfKFupmpeWIzBwyLVggBasEiiwrKQSwHVVlQy1ZSMTNXpEIVd-rmshPEzJ1f5ul-Ln4HJvNnFI7fjSiBKk5vMK1Kiu96pOMefkvOlS2GL6NpyZ38WMNIfFRnuzt7kOPfYhtv_Du5j-oOmshx8bIXi-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435918736</pqid></control><display><type>article</type><title>Rapid and even spreading of complex fluids over a large area in porous substrates</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Agrawal, Prashant ; Kumar, Hemant ; Kumar, Prasoon</creator><creatorcontrib>Agrawal, Prashant ; Kumar, Hemant ; Kumar, Prasoon</creatorcontrib><description>Rapid and even spreading of complex fluids over a large area on substrates like paper is required for chemical and biological sensing applications. Non-Newtonian flow behavior and the presence of multi-phase components pose a significant challenge to uniform flow in porous media. Specifically in the case of blood, for biosensing applications, fast spread on a large area is required to avoid coagulation and non-uniform component spread. In this work, we have developed a filter paper-based device to resolve this spreading challenge. We sandwich the filter paper between a matrix of nanofibrous membrane backed by polyethylene terephthalate (PET) sheets, forming a multi-scale porous network: one within the filter paper and the other between the PET sheet and the filter paper. By doing so, we decrease the overall resistance to flow while maintaining the same capillary suction pressure to obtain a quick, uniform spread of dyed liquids, milk solutions, and whole blood. The device design and concepts used here can be used in paper microfluidic applications and to develop devices for dried blood spot analysis, which utilize this fast flow while maintaining even spreading over a large area.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0019939</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Blood ; Capillary pressure ; Coagulation ; Filter paper ; Flow resistance ; Microfluidics ; Milk ; Non Newtonian flow ; Polyethylene terephthalate ; Porous media ; Substrates ; Suction ; Uniform flow</subject><ispartof>Applied physics letters, 2020-08, Vol.117 (7)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-6d76c14d1a303ea19203ad3d62a2a475623197740a9d04d12cafaa25bf89c22f3</citedby><cites>FETCH-LOGICAL-c362t-6d76c14d1a303ea19203ad3d62a2a475623197740a9d04d12cafaa25bf89c22f3</cites><orcidid>0000-0003-0854-3889 ; 0000-0002-6558-2684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0019939$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Agrawal, Prashant</creatorcontrib><creatorcontrib>Kumar, Hemant</creatorcontrib><creatorcontrib>Kumar, Prasoon</creatorcontrib><title>Rapid and even spreading of complex fluids over a large area in porous substrates</title><title>Applied physics letters</title><description>Rapid and even spreading of complex fluids over a large area on substrates like paper is required for chemical and biological sensing applications. Non-Newtonian flow behavior and the presence of multi-phase components pose a significant challenge to uniform flow in porous media. Specifically in the case of blood, for biosensing applications, fast spread on a large area is required to avoid coagulation and non-uniform component spread. In this work, we have developed a filter paper-based device to resolve this spreading challenge. We sandwich the filter paper between a matrix of nanofibrous membrane backed by polyethylene terephthalate (PET) sheets, forming a multi-scale porous network: one within the filter paper and the other between the PET sheet and the filter paper. By doing so, we decrease the overall resistance to flow while maintaining the same capillary suction pressure to obtain a quick, uniform spread of dyed liquids, milk solutions, and whole blood. The device design and concepts used here can be used in paper microfluidic applications and to develop devices for dried blood spot analysis, which utilize this fast flow while maintaining even spreading over a large area.</description><subject>Applied physics</subject><subject>Blood</subject><subject>Capillary pressure</subject><subject>Coagulation</subject><subject>Filter paper</subject><subject>Flow resistance</subject><subject>Microfluidics</subject><subject>Milk</subject><subject>Non Newtonian flow</subject><subject>Polyethylene terephthalate</subject><subject>Porous media</subject><subject>Substrates</subject><subject>Suction</subject><subject>Uniform flow</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYmuROMs1Sin9QEEXX4XaSlJTpZExmir69Iy24d3U48HEvHEIuOZtxpuBWzhjjWoM-IhPOqqoAzufHZMIYg0JpyU_JWc6bsUoBMCGvb9gFS7G11O1cS3OXHNrQrmn0tI7brnFf1DdDsJnGnUsUaYNp7SiOjoaWdjHFIdM8rHKfsHf5nJx4bLK7OOSUfDzcvy-eiuXL4_PiblnUoERfKFupmpeWIzBwyLVggBasEiiwrKQSwHVVlQy1ZSMTNXpEIVd-rmshPEzJ1f5ul-Ln4HJvNnFI7fjSiBKk5vMK1Kiu96pOMefkvOlS2GL6NpyZ38WMNIfFRnuzt7kOPfYhtv_Du5j-oOmshx8bIXi-</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Agrawal, Prashant</creator><creator>Kumar, Hemant</creator><creator>Kumar, Prasoon</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0854-3889</orcidid><orcidid>https://orcid.org/0000-0002-6558-2684</orcidid></search><sort><creationdate>20200817</creationdate><title>Rapid and even spreading of complex fluids over a large area in porous substrates</title><author>Agrawal, Prashant ; Kumar, Hemant ; Kumar, Prasoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6d76c14d1a303ea19203ad3d62a2a475623197740a9d04d12cafaa25bf89c22f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Blood</topic><topic>Capillary pressure</topic><topic>Coagulation</topic><topic>Filter paper</topic><topic>Flow resistance</topic><topic>Microfluidics</topic><topic>Milk</topic><topic>Non Newtonian flow</topic><topic>Polyethylene terephthalate</topic><topic>Porous media</topic><topic>Substrates</topic><topic>Suction</topic><topic>Uniform flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Prashant</creatorcontrib><creatorcontrib>Kumar, Hemant</creatorcontrib><creatorcontrib>Kumar, Prasoon</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrawal, Prashant</au><au>Kumar, Hemant</au><au>Kumar, Prasoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and even spreading of complex fluids over a large area in porous substrates</atitle><jtitle>Applied physics letters</jtitle><date>2020-08-17</date><risdate>2020</risdate><volume>117</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Rapid and even spreading of complex fluids over a large area on substrates like paper is required for chemical and biological sensing applications. Non-Newtonian flow behavior and the presence of multi-phase components pose a significant challenge to uniform flow in porous media. Specifically in the case of blood, for biosensing applications, fast spread on a large area is required to avoid coagulation and non-uniform component spread. In this work, we have developed a filter paper-based device to resolve this spreading challenge. We sandwich the filter paper between a matrix of nanofibrous membrane backed by polyethylene terephthalate (PET) sheets, forming a multi-scale porous network: one within the filter paper and the other between the PET sheet and the filter paper. By doing so, we decrease the overall resistance to flow while maintaining the same capillary suction pressure to obtain a quick, uniform spread of dyed liquids, milk solutions, and whole blood. The device design and concepts used here can be used in paper microfluidic applications and to develop devices for dried blood spot analysis, which utilize this fast flow while maintaining even spreading over a large area.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0019939</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0854-3889</orcidid><orcidid>https://orcid.org/0000-0002-6558-2684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-08, Vol.117 (7) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2435918736 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Blood Capillary pressure Coagulation Filter paper Flow resistance Microfluidics Milk Non Newtonian flow Polyethylene terephthalate Porous media Substrates Suction Uniform flow |
title | Rapid and even spreading of complex fluids over a large area in porous substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20even%20spreading%20of%20complex%20fluids%20over%20a%20large%20area%20in%20porous%20substrates&rft.jtitle=Applied%20physics%20letters&rft.au=Agrawal,%20Prashant&rft.date=2020-08-17&rft.volume=117&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0019939&rft_dat=%3Cproquest_cross%3E2435918736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435918736&rft_id=info:pmid/&rfr_iscdi=true |