Rapid and even spreading of complex fluids over a large area in porous substrates

Rapid and even spreading of complex fluids over a large area on substrates like paper is required for chemical and biological sensing applications. Non-Newtonian flow behavior and the presence of multi-phase components pose a significant challenge to uniform flow in porous media. Specifically in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-08, Vol.117 (7)
Hauptverfasser: Agrawal, Prashant, Kumar, Hemant, Kumar, Prasoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics letters
container_volume 117
creator Agrawal, Prashant
Kumar, Hemant
Kumar, Prasoon
description Rapid and even spreading of complex fluids over a large area on substrates like paper is required for chemical and biological sensing applications. Non-Newtonian flow behavior and the presence of multi-phase components pose a significant challenge to uniform flow in porous media. Specifically in the case of blood, for biosensing applications, fast spread on a large area is required to avoid coagulation and non-uniform component spread. In this work, we have developed a filter paper-based device to resolve this spreading challenge. We sandwich the filter paper between a matrix of nanofibrous membrane backed by polyethylene terephthalate (PET) sheets, forming a multi-scale porous network: one within the filter paper and the other between the PET sheet and the filter paper. By doing so, we decrease the overall resistance to flow while maintaining the same capillary suction pressure to obtain a quick, uniform spread of dyed liquids, milk solutions, and whole blood. The device design and concepts used here can be used in paper microfluidic applications and to develop devices for dried blood spot analysis, which utilize this fast flow while maintaining even spreading over a large area.
doi_str_mv 10.1063/5.0019939
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435918736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435918736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6d76c14d1a303ea19203ad3d62a2a475623197740a9d04d12cafaa25bf89c22f3</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYmuROMs1Sin9QEEXX4XaSlJTpZExmir69Iy24d3U48HEvHEIuOZtxpuBWzhjjWoM-IhPOqqoAzufHZMIYg0JpyU_JWc6bsUoBMCGvb9gFS7G11O1cS3OXHNrQrmn0tI7brnFf1DdDsJnGnUsUaYNp7SiOjoaWdjHFIdM8rHKfsHf5nJx4bLK7OOSUfDzcvy-eiuXL4_PiblnUoERfKFupmpeWIzBwyLVggBasEiiwrKQSwHVVlQy1ZSMTNXpEIVd-rmshPEzJ1f5ul-Ln4HJvNnFI7fjSiBKk5vMK1Kiu96pOMefkvOlS2GL6NpyZ38WMNIfFRnuzt7kOPfYhtv_Du5j-oOmshx8bIXi-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435918736</pqid></control><display><type>article</type><title>Rapid and even spreading of complex fluids over a large area in porous substrates</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Agrawal, Prashant ; Kumar, Hemant ; Kumar, Prasoon</creator><creatorcontrib>Agrawal, Prashant ; Kumar, Hemant ; Kumar, Prasoon</creatorcontrib><description>Rapid and even spreading of complex fluids over a large area on substrates like paper is required for chemical and biological sensing applications. Non-Newtonian flow behavior and the presence of multi-phase components pose a significant challenge to uniform flow in porous media. Specifically in the case of blood, for biosensing applications, fast spread on a large area is required to avoid coagulation and non-uniform component spread. In this work, we have developed a filter paper-based device to resolve this spreading challenge. We sandwich the filter paper between a matrix of nanofibrous membrane backed by polyethylene terephthalate (PET) sheets, forming a multi-scale porous network: one within the filter paper and the other between the PET sheet and the filter paper. By doing so, we decrease the overall resistance to flow while maintaining the same capillary suction pressure to obtain a quick, uniform spread of dyed liquids, milk solutions, and whole blood. The device design and concepts used here can be used in paper microfluidic applications and to develop devices for dried blood spot analysis, which utilize this fast flow while maintaining even spreading over a large area.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0019939</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Blood ; Capillary pressure ; Coagulation ; Filter paper ; Flow resistance ; Microfluidics ; Milk ; Non Newtonian flow ; Polyethylene terephthalate ; Porous media ; Substrates ; Suction ; Uniform flow</subject><ispartof>Applied physics letters, 2020-08, Vol.117 (7)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-6d76c14d1a303ea19203ad3d62a2a475623197740a9d04d12cafaa25bf89c22f3</citedby><cites>FETCH-LOGICAL-c362t-6d76c14d1a303ea19203ad3d62a2a475623197740a9d04d12cafaa25bf89c22f3</cites><orcidid>0000-0003-0854-3889 ; 0000-0002-6558-2684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0019939$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Agrawal, Prashant</creatorcontrib><creatorcontrib>Kumar, Hemant</creatorcontrib><creatorcontrib>Kumar, Prasoon</creatorcontrib><title>Rapid and even spreading of complex fluids over a large area in porous substrates</title><title>Applied physics letters</title><description>Rapid and even spreading of complex fluids over a large area on substrates like paper is required for chemical and biological sensing applications. Non-Newtonian flow behavior and the presence of multi-phase components pose a significant challenge to uniform flow in porous media. Specifically in the case of blood, for biosensing applications, fast spread on a large area is required to avoid coagulation and non-uniform component spread. In this work, we have developed a filter paper-based device to resolve this spreading challenge. We sandwich the filter paper between a matrix of nanofibrous membrane backed by polyethylene terephthalate (PET) sheets, forming a multi-scale porous network: one within the filter paper and the other between the PET sheet and the filter paper. By doing so, we decrease the overall resistance to flow while maintaining the same capillary suction pressure to obtain a quick, uniform spread of dyed liquids, milk solutions, and whole blood. The device design and concepts used here can be used in paper microfluidic applications and to develop devices for dried blood spot analysis, which utilize this fast flow while maintaining even spreading over a large area.</description><subject>Applied physics</subject><subject>Blood</subject><subject>Capillary pressure</subject><subject>Coagulation</subject><subject>Filter paper</subject><subject>Flow resistance</subject><subject>Microfluidics</subject><subject>Milk</subject><subject>Non Newtonian flow</subject><subject>Polyethylene terephthalate</subject><subject>Porous media</subject><subject>Substrates</subject><subject>Suction</subject><subject>Uniform flow</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYmuROMs1Sin9QEEXX4XaSlJTpZExmir69Iy24d3U48HEvHEIuOZtxpuBWzhjjWoM-IhPOqqoAzufHZMIYg0JpyU_JWc6bsUoBMCGvb9gFS7G11O1cS3OXHNrQrmn0tI7brnFf1DdDsJnGnUsUaYNp7SiOjoaWdjHFIdM8rHKfsHf5nJx4bLK7OOSUfDzcvy-eiuXL4_PiblnUoERfKFupmpeWIzBwyLVggBasEiiwrKQSwHVVlQy1ZSMTNXpEIVd-rmshPEzJ1f5ul-Ln4HJvNnFI7fjSiBKk5vMK1Kiu96pOMefkvOlS2GL6NpyZ38WMNIfFRnuzt7kOPfYhtv_Du5j-oOmshx8bIXi-</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Agrawal, Prashant</creator><creator>Kumar, Hemant</creator><creator>Kumar, Prasoon</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0854-3889</orcidid><orcidid>https://orcid.org/0000-0002-6558-2684</orcidid></search><sort><creationdate>20200817</creationdate><title>Rapid and even spreading of complex fluids over a large area in porous substrates</title><author>Agrawal, Prashant ; Kumar, Hemant ; Kumar, Prasoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6d76c14d1a303ea19203ad3d62a2a475623197740a9d04d12cafaa25bf89c22f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Blood</topic><topic>Capillary pressure</topic><topic>Coagulation</topic><topic>Filter paper</topic><topic>Flow resistance</topic><topic>Microfluidics</topic><topic>Milk</topic><topic>Non Newtonian flow</topic><topic>Polyethylene terephthalate</topic><topic>Porous media</topic><topic>Substrates</topic><topic>Suction</topic><topic>Uniform flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Prashant</creatorcontrib><creatorcontrib>Kumar, Hemant</creatorcontrib><creatorcontrib>Kumar, Prasoon</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrawal, Prashant</au><au>Kumar, Hemant</au><au>Kumar, Prasoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and even spreading of complex fluids over a large area in porous substrates</atitle><jtitle>Applied physics letters</jtitle><date>2020-08-17</date><risdate>2020</risdate><volume>117</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Rapid and even spreading of complex fluids over a large area on substrates like paper is required for chemical and biological sensing applications. Non-Newtonian flow behavior and the presence of multi-phase components pose a significant challenge to uniform flow in porous media. Specifically in the case of blood, for biosensing applications, fast spread on a large area is required to avoid coagulation and non-uniform component spread. In this work, we have developed a filter paper-based device to resolve this spreading challenge. We sandwich the filter paper between a matrix of nanofibrous membrane backed by polyethylene terephthalate (PET) sheets, forming a multi-scale porous network: one within the filter paper and the other between the PET sheet and the filter paper. By doing so, we decrease the overall resistance to flow while maintaining the same capillary suction pressure to obtain a quick, uniform spread of dyed liquids, milk solutions, and whole blood. The device design and concepts used here can be used in paper microfluidic applications and to develop devices for dried blood spot analysis, which utilize this fast flow while maintaining even spreading over a large area.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0019939</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0854-3889</orcidid><orcidid>https://orcid.org/0000-0002-6558-2684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-08, Vol.117 (7)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2435918736
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Blood
Capillary pressure
Coagulation
Filter paper
Flow resistance
Microfluidics
Milk
Non Newtonian flow
Polyethylene terephthalate
Porous media
Substrates
Suction
Uniform flow
title Rapid and even spreading of complex fluids over a large area in porous substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20even%20spreading%20of%20complex%20fluids%20over%20a%20large%20area%20in%20porous%20substrates&rft.jtitle=Applied%20physics%20letters&rft.au=Agrawal,%20Prashant&rft.date=2020-08-17&rft.volume=117&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0019939&rft_dat=%3Cproquest_cross%3E2435918736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435918736&rft_id=info:pmid/&rfr_iscdi=true