FERRARI: an efficient framework for visual exploratory subgraph search in graph databases

Exploratory search paradigm assists users who do not have a clear search intent and are unfamiliar with the underlying data space. Query formulation evolves iteratively in this paradigm as a user becomes more familiar with the content. Although exploratory search has received significant attention r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The VLDB journal 2020-09, Vol.29 (5), p.973-998
Hauptverfasser: Wang, Chaohui, Xie, Miao, Bhowmick, Sourav S., Choi, Byron, Xiao, Xiaokui, Zhou, Shuigeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 998
container_issue 5
container_start_page 973
container_title The VLDB journal
container_volume 29
creator Wang, Chaohui
Xie, Miao
Bhowmick, Sourav S.
Choi, Byron
Xiao, Xiaokui
Zhou, Shuigeng
description Exploratory search paradigm assists users who do not have a clear search intent and are unfamiliar with the underlying data space. Query formulation evolves iteratively in this paradigm as a user becomes more familiar with the content. Although exploratory search has received significant attention recently in the context of structured data, scant attention has been paid for graph-structured data. An early effort for building exploratory subgraph search framework on graph databases suffers from efficiency and scalability problems. In this paper, we present a visual exploratory subgraph search framework called ferrari , which embodies two novel index structures called vaccine and advise , to address these limitations. vaccine is an offline, feature-based index that stores rich information related to frequent and infrequent subgraphs in the underlying graph database, and how they can be transformed from one subgraph to another during visual query formulation. advise , on the other hand, is an adaptive , compact, on-the-fly index instantiated during iterative visual formulation/reformulation of a subgraph query for exploratory search and records relevant information to efficiently support its repeated evaluation. Extensive experiments and user study on real-world datasets demonstrate superiority of ferrari to a state-of-the-art visual exploratory subgraph search technique.
doi_str_mv 10.1007/s00778-020-00601-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435545533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435545533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8d17f5452a7e74df703567be13e7015398a5bd736c87b1ce62e366f7072dbd3b3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcv4FXA6-hJ0iStd2NsOhgIQ0GvQtomW-fW1qRV9_ZGK3jnucgh8P3_gQ-hSwrXFEDdhPiolAADAiCBEjhCI8iSjKRKPR-jEQUpSRrnFJ2FsAUAxpgYoZf5bLWarBa32NTYOlcVla077LzZ24_Gv2LXePxehd7ssP1sd403XeMPOPT52pt2g4M1vtjgqsbDvzSdyU2w4RydOLML9uJ3j9HTfPY4vSfLh7vFdLIkBadZR9KSKicSwYyyKimdAi6kyi3lVgEVPEuNyEvFZZGqnBZWMsuljJhiZV7ynI_R1dDb-uatt6HT26b3dTypWcJFrBacR4oNVOGbELx1uvXV3viDpqC_FepBoY4K9Y9CDTHEh1CIcL22_q_6n9QXSqxzqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435545533</pqid></control><display><type>article</type><title>FERRARI: an efficient framework for visual exploratory subgraph search in graph databases</title><source>Springer Nature - Complete Springer Journals</source><source>ACM Digital Library Complete</source><creator>Wang, Chaohui ; Xie, Miao ; Bhowmick, Sourav S. ; Choi, Byron ; Xiao, Xiaokui ; Zhou, Shuigeng</creator><creatorcontrib>Wang, Chaohui ; Xie, Miao ; Bhowmick, Sourav S. ; Choi, Byron ; Xiao, Xiaokui ; Zhou, Shuigeng</creatorcontrib><description>Exploratory search paradigm assists users who do not have a clear search intent and are unfamiliar with the underlying data space. Query formulation evolves iteratively in this paradigm as a user becomes more familiar with the content. Although exploratory search has received significant attention recently in the context of structured data, scant attention has been paid for graph-structured data. An early effort for building exploratory subgraph search framework on graph databases suffers from efficiency and scalability problems. In this paper, we present a visual exploratory subgraph search framework called ferrari , which embodies two novel index structures called vaccine and advise , to address these limitations. vaccine is an offline, feature-based index that stores rich information related to frequent and infrequent subgraphs in the underlying graph database, and how they can be transformed from one subgraph to another during visual query formulation. advise , on the other hand, is an adaptive , compact, on-the-fly index instantiated during iterative visual formulation/reformulation of a subgraph query for exploratory search and records relevant information to efficiently support its repeated evaluation. Extensive experiments and user study on real-world datasets demonstrate superiority of ferrari to a state-of-the-art visual exploratory subgraph search technique.</description><identifier>ISSN: 1066-8888</identifier><identifier>EISSN: 0949-877X</identifier><identifier>DOI: 10.1007/s00778-020-00601-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer Science ; Database Management ; Graph theory ; Queries ; Query formulation ; Regular Paper ; Searching ; Vaccines ; Visual flight</subject><ispartof>The VLDB journal, 2020-09, Vol.29 (5), p.973-998</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8d17f5452a7e74df703567be13e7015398a5bd736c87b1ce62e366f7072dbd3b3</citedby><cites>FETCH-LOGICAL-c319t-8d17f5452a7e74df703567be13e7015398a5bd736c87b1ce62e366f7072dbd3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00778-020-00601-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00778-020-00601-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Chaohui</creatorcontrib><creatorcontrib>Xie, Miao</creatorcontrib><creatorcontrib>Bhowmick, Sourav S.</creatorcontrib><creatorcontrib>Choi, Byron</creatorcontrib><creatorcontrib>Xiao, Xiaokui</creatorcontrib><creatorcontrib>Zhou, Shuigeng</creatorcontrib><title>FERRARI: an efficient framework for visual exploratory subgraph search in graph databases</title><title>The VLDB journal</title><addtitle>The VLDB Journal</addtitle><description>Exploratory search paradigm assists users who do not have a clear search intent and are unfamiliar with the underlying data space. Query formulation evolves iteratively in this paradigm as a user becomes more familiar with the content. Although exploratory search has received significant attention recently in the context of structured data, scant attention has been paid for graph-structured data. An early effort for building exploratory subgraph search framework on graph databases suffers from efficiency and scalability problems. In this paper, we present a visual exploratory subgraph search framework called ferrari , which embodies two novel index structures called vaccine and advise , to address these limitations. vaccine is an offline, feature-based index that stores rich information related to frequent and infrequent subgraphs in the underlying graph database, and how they can be transformed from one subgraph to another during visual query formulation. advise , on the other hand, is an adaptive , compact, on-the-fly index instantiated during iterative visual formulation/reformulation of a subgraph query for exploratory search and records relevant information to efficiently support its repeated evaluation. Extensive experiments and user study on real-world datasets demonstrate superiority of ferrari to a state-of-the-art visual exploratory subgraph search technique.</description><subject>Computer Science</subject><subject>Database Management</subject><subject>Graph theory</subject><subject>Queries</subject><subject>Query formulation</subject><subject>Regular Paper</subject><subject>Searching</subject><subject>Vaccines</subject><subject>Visual flight</subject><issn>1066-8888</issn><issn>0949-877X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOKcv4FXA6-hJ0iStd2NsOhgIQ0GvQtomW-fW1qRV9_ZGK3jnucgh8P3_gQ-hSwrXFEDdhPiolAADAiCBEjhCI8iSjKRKPR-jEQUpSRrnFJ2FsAUAxpgYoZf5bLWarBa32NTYOlcVla077LzZ24_Gv2LXePxehd7ssP1sd403XeMPOPT52pt2g4M1vtjgqsbDvzSdyU2w4RydOLML9uJ3j9HTfPY4vSfLh7vFdLIkBadZR9KSKicSwYyyKimdAi6kyi3lVgEVPEuNyEvFZZGqnBZWMsuljJhiZV7ynI_R1dDb-uatt6HT26b3dTypWcJFrBacR4oNVOGbELx1uvXV3viDpqC_FepBoY4K9Y9CDTHEh1CIcL22_q_6n9QXSqxzqQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wang, Chaohui</creator><creator>Xie, Miao</creator><creator>Bhowmick, Sourav S.</creator><creator>Choi, Byron</creator><creator>Xiao, Xiaokui</creator><creator>Zhou, Shuigeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>FERRARI: an efficient framework for visual exploratory subgraph search in graph databases</title><author>Wang, Chaohui ; Xie, Miao ; Bhowmick, Sourav S. ; Choi, Byron ; Xiao, Xiaokui ; Zhou, Shuigeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8d17f5452a7e74df703567be13e7015398a5bd736c87b1ce62e366f7072dbd3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Science</topic><topic>Database Management</topic><topic>Graph theory</topic><topic>Queries</topic><topic>Query formulation</topic><topic>Regular Paper</topic><topic>Searching</topic><topic>Vaccines</topic><topic>Visual flight</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chaohui</creatorcontrib><creatorcontrib>Xie, Miao</creatorcontrib><creatorcontrib>Bhowmick, Sourav S.</creatorcontrib><creatorcontrib>Choi, Byron</creatorcontrib><creatorcontrib>Xiao, Xiaokui</creatorcontrib><creatorcontrib>Zhou, Shuigeng</creatorcontrib><collection>CrossRef</collection><jtitle>The VLDB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chaohui</au><au>Xie, Miao</au><au>Bhowmick, Sourav S.</au><au>Choi, Byron</au><au>Xiao, Xiaokui</au><au>Zhou, Shuigeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FERRARI: an efficient framework for visual exploratory subgraph search in graph databases</atitle><jtitle>The VLDB journal</jtitle><stitle>The VLDB Journal</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>29</volume><issue>5</issue><spage>973</spage><epage>998</epage><pages>973-998</pages><issn>1066-8888</issn><eissn>0949-877X</eissn><abstract>Exploratory search paradigm assists users who do not have a clear search intent and are unfamiliar with the underlying data space. Query formulation evolves iteratively in this paradigm as a user becomes more familiar with the content. Although exploratory search has received significant attention recently in the context of structured data, scant attention has been paid for graph-structured data. An early effort for building exploratory subgraph search framework on graph databases suffers from efficiency and scalability problems. In this paper, we present a visual exploratory subgraph search framework called ferrari , which embodies two novel index structures called vaccine and advise , to address these limitations. vaccine is an offline, feature-based index that stores rich information related to frequent and infrequent subgraphs in the underlying graph database, and how they can be transformed from one subgraph to another during visual query formulation. advise , on the other hand, is an adaptive , compact, on-the-fly index instantiated during iterative visual formulation/reformulation of a subgraph query for exploratory search and records relevant information to efficiently support its repeated evaluation. Extensive experiments and user study on real-world datasets demonstrate superiority of ferrari to a state-of-the-art visual exploratory subgraph search technique.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00778-020-00601-0</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-8888
ispartof The VLDB journal, 2020-09, Vol.29 (5), p.973-998
issn 1066-8888
0949-877X
language eng
recordid cdi_proquest_journals_2435545533
source Springer Nature - Complete Springer Journals; ACM Digital Library Complete
subjects Computer Science
Database Management
Graph theory
Queries
Query formulation
Regular Paper
Searching
Vaccines
Visual flight
title FERRARI: an efficient framework for visual exploratory subgraph search in graph databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FERRARI:%20an%20efficient%20framework%20for%20visual%20exploratory%20subgraph%20search%20in%20graph%20databases&rft.jtitle=The%20VLDB%20journal&rft.au=Wang,%20Chaohui&rft.date=2020-09-01&rft.volume=29&rft.issue=5&rft.spage=973&rft.epage=998&rft.pages=973-998&rft.issn=1066-8888&rft.eissn=0949-877X&rft_id=info:doi/10.1007/s00778-020-00601-0&rft_dat=%3Cproquest_cross%3E2435545533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435545533&rft_id=info:pmid/&rfr_iscdi=true