Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature

Nitrogen doping has been proven an efficient strategy to modulate the electronic structure of metal oxides to tune their properties. Herein, we report the synthesis of N-doped SnO2 microspheres through calcining the pristine SnO2 in NH3 atmosphere. Texture characterizations show that N–SnO2 microsph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-09, Vol.834, p.155209, Article 155209
Hauptverfasser: Du, Wenjing, Si, Wenxu, Du, Wenzheng, Ouyang, Tianhong, Wang, Fenglong, Gao, Mengjiao, Wu, Lili, Liu, Jiurong, Qian, Zhao, Liu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 155209
container_title Journal of alloys and compounds
container_volume 834
creator Du, Wenjing
Si, Wenxu
Du, Wenzheng
Ouyang, Tianhong
Wang, Fenglong
Gao, Mengjiao
Wu, Lili
Liu, Jiurong
Qian, Zhao
Liu, Wei
description Nitrogen doping has been proven an efficient strategy to modulate the electronic structure of metal oxides to tune their properties. Herein, we report the synthesis of N-doped SnO2 microspheres through calcining the pristine SnO2 in NH3 atmosphere. Texture characterizations show that N–SnO2 microspheres exhibit 3D-porous architectures with a diameter of ca. 300–500 nm. After NH3 treatment, the SnO2 exhibits the formation of the N-doping and oxygen vacancies on the surface of the material, rich free-electrons and the narrow energy band. It is found that the as-prepared N-doped SnO2 microspheres at 200 °C (N–SnO2-200), show superior selectivity and high response (S = 155 to 5 ppm NO2) compared with its counterparts. DFT calculations and experimental results illustrate that N impurities and oxygen vacancies as N-induced active sites favor the adsorption of NO2 molecules; rich free-electrons increase the amount of adsorbed NO2 molecules; and the narrow energy band promotes the effectively electron transfer during the sensing reaction. Therefore, in this work we unravel the improved NO2 gas-sensing performances of the N-doped SnO2 and provide new guidance for the development of highly efficient metal oxide sensing materials for NO2 detection. •The N-doped SnO2 nanospheres were synthesized via NH3 heat treatment of the pristine SnO2.•The correlation between the content of N doping and the gas-sensing property was further studied.•The N–SnO2 nanospheres obtained at 200 °C shows improved response and selectivity to NO2 at 80 °C.•The improved sensing mechanism of the N–SnO2 sensor to NO2 was further studied via DFT calculation.
doi_str_mv 10.1016/j.jallcom.2020.155209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435541202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820315723</els_id><sourcerecordid>2435541202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-92ae446d7396e55b918cd63b6bd539c8773fa6887587516ad6256cfd58ddbf213</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BCHgc9dcmjR9EhFvIPqgPodsMtWUNqlp1su_N8v6LgwMDOfMzPkQOqVkRQmV5_2qN8Ng47hihJWZEIy0e2hBVcOrWsp2Hy1Iy0SluFKH6Giee0IIbTldoPAakvmEwYc3nN8BTymOMYPDwecU3yBg5-O3d4AdZLDZx4AnSF1MowkWcOzwY-XiVBzP4Ynh0dsU5-kdEszYZDzEL5xhLBaTNwmO0UFnhhlO_voSvd5cv1zdVQ9Pt_dXlw-V5bzJVcsM1LV0DW8lCLFuqbJO8rVcO8Fbq5qGd0Yq1YhSVBonmZC2c0I5t-4Y5Ut0tttb8nxsYM66j5sUyknNai5ETQuqohI71fbnOUGnp-RHk340JXqLVvf6D63eotU7tMV3sfNBifDpIenZeig4nE-FkXbR_7PhF6_nhgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435541202</pqid></control><display><type>article</type><title>Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Du, Wenjing ; Si, Wenxu ; Du, Wenzheng ; Ouyang, Tianhong ; Wang, Fenglong ; Gao, Mengjiao ; Wu, Lili ; Liu, Jiurong ; Qian, Zhao ; Liu, Wei</creator><creatorcontrib>Du, Wenjing ; Si, Wenxu ; Du, Wenzheng ; Ouyang, Tianhong ; Wang, Fenglong ; Gao, Mengjiao ; Wu, Lili ; Liu, Jiurong ; Qian, Zhao ; Liu, Wei</creatorcontrib><description>Nitrogen doping has been proven an efficient strategy to modulate the electronic structure of metal oxides to tune their properties. Herein, we report the synthesis of N-doped SnO2 microspheres through calcining the pristine SnO2 in NH3 atmosphere. Texture characterizations show that N–SnO2 microspheres exhibit 3D-porous architectures with a diameter of ca. 300–500 nm. After NH3 treatment, the SnO2 exhibits the formation of the N-doping and oxygen vacancies on the surface of the material, rich free-electrons and the narrow energy band. It is found that the as-prepared N-doped SnO2 microspheres at 200 °C (N–SnO2-200), show superior selectivity and high response (S = 155 to 5 ppm NO2) compared with its counterparts. DFT calculations and experimental results illustrate that N impurities and oxygen vacancies as N-induced active sites favor the adsorption of NO2 molecules; rich free-electrons increase the amount of adsorbed NO2 molecules; and the narrow energy band promotes the effectively electron transfer during the sensing reaction. Therefore, in this work we unravel the improved NO2 gas-sensing performances of the N-doped SnO2 and provide new guidance for the development of highly efficient metal oxide sensing materials for NO2 detection. •The N-doped SnO2 nanospheres were synthesized via NH3 heat treatment of the pristine SnO2.•The correlation between the content of N doping and the gas-sensing property was further studied.•The N–SnO2 nanospheres obtained at 200 °C shows improved response and selectivity to NO2 at 80 °C.•The improved sensing mechanism of the N–SnO2 sensor to NO2 was further studied via DFT calculation.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.155209</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Ammonia ; Detection ; DFT calculations ; Doping ; Electron transfer ; Electronic structure ; Energy bands ; Free electrons ; Gas sensing ; Low temperature ; Metal oxides ; Microspheres ; Nitrogen dioxide ; Nitrogen doping ; Selectivity ; Tin dioxide ; Vacancies</subject><ispartof>Journal of alloys and compounds, 2020-09, Vol.834, p.155209, Article 155209</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-92ae446d7396e55b918cd63b6bd539c8773fa6887587516ad6256cfd58ddbf213</citedby><cites>FETCH-LOGICAL-c337t-92ae446d7396e55b918cd63b6bd539c8773fa6887587516ad6256cfd58ddbf213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838820315723$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Du, Wenjing</creatorcontrib><creatorcontrib>Si, Wenxu</creatorcontrib><creatorcontrib>Du, Wenzheng</creatorcontrib><creatorcontrib>Ouyang, Tianhong</creatorcontrib><creatorcontrib>Wang, Fenglong</creatorcontrib><creatorcontrib>Gao, Mengjiao</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Liu, Jiurong</creatorcontrib><creatorcontrib>Qian, Zhao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><title>Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature</title><title>Journal of alloys and compounds</title><description>Nitrogen doping has been proven an efficient strategy to modulate the electronic structure of metal oxides to tune their properties. Herein, we report the synthesis of N-doped SnO2 microspheres through calcining the pristine SnO2 in NH3 atmosphere. Texture characterizations show that N–SnO2 microspheres exhibit 3D-porous architectures with a diameter of ca. 300–500 nm. After NH3 treatment, the SnO2 exhibits the formation of the N-doping and oxygen vacancies on the surface of the material, rich free-electrons and the narrow energy band. It is found that the as-prepared N-doped SnO2 microspheres at 200 °C (N–SnO2-200), show superior selectivity and high response (S = 155 to 5 ppm NO2) compared with its counterparts. DFT calculations and experimental results illustrate that N impurities and oxygen vacancies as N-induced active sites favor the adsorption of NO2 molecules; rich free-electrons increase the amount of adsorbed NO2 molecules; and the narrow energy band promotes the effectively electron transfer during the sensing reaction. Therefore, in this work we unravel the improved NO2 gas-sensing performances of the N-doped SnO2 and provide new guidance for the development of highly efficient metal oxide sensing materials for NO2 detection. •The N-doped SnO2 nanospheres were synthesized via NH3 heat treatment of the pristine SnO2.•The correlation between the content of N doping and the gas-sensing property was further studied.•The N–SnO2 nanospheres obtained at 200 °C shows improved response and selectivity to NO2 at 80 °C.•The improved sensing mechanism of the N–SnO2 sensor to NO2 was further studied via DFT calculation.</description><subject>Ammonia</subject><subject>Detection</subject><subject>DFT calculations</subject><subject>Doping</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Energy bands</subject><subject>Free electrons</subject><subject>Gas sensing</subject><subject>Low temperature</subject><subject>Metal oxides</subject><subject>Microspheres</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen doping</subject><subject>Selectivity</subject><subject>Tin dioxide</subject><subject>Vacancies</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouK7-BCHgc9dcmjR9EhFvIPqgPodsMtWUNqlp1su_N8v6LgwMDOfMzPkQOqVkRQmV5_2qN8Ng47hihJWZEIy0e2hBVcOrWsp2Hy1Iy0SluFKH6Giee0IIbTldoPAakvmEwYc3nN8BTymOMYPDwecU3yBg5-O3d4AdZLDZx4AnSF1MowkWcOzwY-XiVBzP4Ynh0dsU5-kdEszYZDzEL5xhLBaTNwmO0UFnhhlO_voSvd5cv1zdVQ9Pt_dXlw-V5bzJVcsM1LV0DW8lCLFuqbJO8rVcO8Fbq5qGd0Yq1YhSVBonmZC2c0I5t-4Y5Ut0tttb8nxsYM66j5sUyknNai5ETQuqohI71fbnOUGnp-RHk340JXqLVvf6D63eotU7tMV3sfNBifDpIenZeig4nE-FkXbR_7PhF6_nhgg</recordid><startdate>20200905</startdate><enddate>20200905</enddate><creator>Du, Wenjing</creator><creator>Si, Wenxu</creator><creator>Du, Wenzheng</creator><creator>Ouyang, Tianhong</creator><creator>Wang, Fenglong</creator><creator>Gao, Mengjiao</creator><creator>Wu, Lili</creator><creator>Liu, Jiurong</creator><creator>Qian, Zhao</creator><creator>Liu, Wei</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200905</creationdate><title>Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature</title><author>Du, Wenjing ; Si, Wenxu ; Du, Wenzheng ; Ouyang, Tianhong ; Wang, Fenglong ; Gao, Mengjiao ; Wu, Lili ; Liu, Jiurong ; Qian, Zhao ; Liu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-92ae446d7396e55b918cd63b6bd539c8773fa6887587516ad6256cfd58ddbf213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Detection</topic><topic>DFT calculations</topic><topic>Doping</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Energy bands</topic><topic>Free electrons</topic><topic>Gas sensing</topic><topic>Low temperature</topic><topic>Metal oxides</topic><topic>Microspheres</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen doping</topic><topic>Selectivity</topic><topic>Tin dioxide</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Wenjing</creatorcontrib><creatorcontrib>Si, Wenxu</creatorcontrib><creatorcontrib>Du, Wenzheng</creatorcontrib><creatorcontrib>Ouyang, Tianhong</creatorcontrib><creatorcontrib>Wang, Fenglong</creatorcontrib><creatorcontrib>Gao, Mengjiao</creatorcontrib><creatorcontrib>Wu, Lili</creatorcontrib><creatorcontrib>Liu, Jiurong</creatorcontrib><creatorcontrib>Qian, Zhao</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Wenjing</au><au>Si, Wenxu</au><au>Du, Wenzheng</au><au>Ouyang, Tianhong</au><au>Wang, Fenglong</au><au>Gao, Mengjiao</au><au>Wu, Lili</au><au>Liu, Jiurong</au><au>Qian, Zhao</au><au>Liu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-09-05</date><risdate>2020</risdate><volume>834</volume><spage>155209</spage><pages>155209-</pages><artnum>155209</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Nitrogen doping has been proven an efficient strategy to modulate the electronic structure of metal oxides to tune their properties. Herein, we report the synthesis of N-doped SnO2 microspheres through calcining the pristine SnO2 in NH3 atmosphere. Texture characterizations show that N–SnO2 microspheres exhibit 3D-porous architectures with a diameter of ca. 300–500 nm. After NH3 treatment, the SnO2 exhibits the formation of the N-doping and oxygen vacancies on the surface of the material, rich free-electrons and the narrow energy band. It is found that the as-prepared N-doped SnO2 microspheres at 200 °C (N–SnO2-200), show superior selectivity and high response (S = 155 to 5 ppm NO2) compared with its counterparts. DFT calculations and experimental results illustrate that N impurities and oxygen vacancies as N-induced active sites favor the adsorption of NO2 molecules; rich free-electrons increase the amount of adsorbed NO2 molecules; and the narrow energy band promotes the effectively electron transfer during the sensing reaction. Therefore, in this work we unravel the improved NO2 gas-sensing performances of the N-doped SnO2 and provide new guidance for the development of highly efficient metal oxide sensing materials for NO2 detection. •The N-doped SnO2 nanospheres were synthesized via NH3 heat treatment of the pristine SnO2.•The correlation between the content of N doping and the gas-sensing property was further studied.•The N–SnO2 nanospheres obtained at 200 °C shows improved response and selectivity to NO2 at 80 °C.•The improved sensing mechanism of the N–SnO2 sensor to NO2 was further studied via DFT calculation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.155209</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-09, Vol.834, p.155209, Article 155209
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2435541202
source Elsevier ScienceDirect Journals
subjects Ammonia
Detection
DFT calculations
Doping
Electron transfer
Electronic structure
Energy bands
Free electrons
Gas sensing
Low temperature
Metal oxides
Microspheres
Nitrogen dioxide
Nitrogen doping
Selectivity
Tin dioxide
Vacancies
title Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20promoted%20nitrogen%20dioxide%20detection%20performance%20of%20N-doped%20SnO2%20microspheres%20at%20low%20temperature&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Du,%20Wenjing&rft.date=2020-09-05&rft.volume=834&rft.spage=155209&rft.pages=155209-&rft.artnum=155209&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.155209&rft_dat=%3Cproquest_cross%3E2435541202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435541202&rft_id=info:pmid/&rft_els_id=S0925838820315723&rfr_iscdi=true