Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps

[Display omitted] •Poison tolerance of electrocatalysts tested in- and ex-situ during hydrogen oxidation.•Floating electrode measurements mimic Electrochemical Hydrogen Pump (EHP) poisoning.•Hydrogen activities measured on the floating electrode were 7x higher than in an EHP.•Electrochemical model p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2020-07, Vol.268, p.118734, Article 118734
Hauptverfasser: Jackson, C., Raymakers, L.F.J.M., Mulder, M.J.J., Kucernak, A.R.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118734
container_title Applied catalysis. B, Environmental
container_volume 268
creator Jackson, C.
Raymakers, L.F.J.M.
Mulder, M.J.J.
Kucernak, A.R.J.
description [Display omitted] •Poison tolerance of electrocatalysts tested in- and ex-situ during hydrogen oxidation.•Floating electrode measurements mimic Electrochemical Hydrogen Pump (EHP) poisoning.•Hydrogen activities measured on the floating electrode were 7x higher than in an EHP.•Electrochemical model produced which describes CO adsorption and blocking process. Current ex-situ electrochemical characterisation techniques for measuring the hydrogen reaction are insufficient to effectively characterise catalytic behaviour under CO containing environments. We show the high mass transport, floating electrode technique offers a solution as it adequately describes hydrogen oxidation (HOR) and evolution over a wide potential range, as needed for various electrochemical systems. The peak HOR mass activities measured on the floating electrode were 68–93 A.mgmetal-1 - significantly higher than achieved in an experimental setup of an electrochemical hydrogen pump (EHP, 6–12 A.mgmetal−1). This implies that the EHPs operate with a significant mass transport limitation. Additionally, poison tolerances of catalysts using low concentrations of 20 ppm CO produced transient responses over ca. 500 s which correctly followed the CO tolerances determined from EHPs (PtRu/C > Pt/C > PtNi/C). A model of the kinetic transient responses on the floating electrode is provided which aids in describing the catalytic behaviour in poisoned environments.
doi_str_mv 10.1016/j.apcatb.2020.118734
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435541155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320301491</els_id><sourcerecordid>2435541155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-74ebc1ec3819f28fc622ab9d39c5dd00350344ebe5ec0732ce2acf6caef354ad3</originalsourceid><addsrcrecordid>eNp9Uctu2zAQJIoUqJP2D3og0LMcPiRb7qFAYLRJgAC5tGdiTS4tGhKpknQA3_IZ6RflP_IloaOizSmnxS5nZmc5hHzmbM4ZX5zv5jBqyJu5YKKMeLuU9TsyO9ZKtq08ITO2EotKyqX8QE5T2jHGhBTtjDxepIQpOb-l2KPOMRQh6A8p0-5gYtiip6Czu3P5QMEbur6lOfQYwWv8StdhGCG6FDwNlo4YbYjD8YmGTQbn0dD9i3jukHZu29EBUqK50NMYYqZP9w-2D5BfGTD4dP-HZtSdd7_3-LLV-X_2Ohychv6_vXE_jOkjeW-hT_jpbz0jv358_7m-qm5uL6_XFzeVli3L1bLGjeZYGr6yorV6IQRsVkaudGMMY7Jhsi4YbFCzpRQaBWi70IBWNjUYeUa-TLpjDMVcymoX9tGXlUrUsmlqzpumoOoJpWNIKaJVY3QDxIPiTB0jUzs1RaaOkakpskL7NtGwXHDnMKqkHZbfNC6W45UJ7m2BZ73SqhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435541155</pqid></control><display><type>article</type><title>Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps</title><source>Elsevier ScienceDirect Journals</source><creator>Jackson, C. ; Raymakers, L.F.J.M. ; Mulder, M.J.J. ; Kucernak, A.R.J.</creator><creatorcontrib>Jackson, C. ; Raymakers, L.F.J.M. ; Mulder, M.J.J. ; Kucernak, A.R.J.</creatorcontrib><description>[Display omitted] •Poison tolerance of electrocatalysts tested in- and ex-situ during hydrogen oxidation.•Floating electrode measurements mimic Electrochemical Hydrogen Pump (EHP) poisoning.•Hydrogen activities measured on the floating electrode were 7x higher than in an EHP.•Electrochemical model produced which describes CO adsorption and blocking process. Current ex-situ electrochemical characterisation techniques for measuring the hydrogen reaction are insufficient to effectively characterise catalytic behaviour under CO containing environments. We show the high mass transport, floating electrode technique offers a solution as it adequately describes hydrogen oxidation (HOR) and evolution over a wide potential range, as needed for various electrochemical systems. The peak HOR mass activities measured on the floating electrode were 68–93 A.mgmetal-1 - significantly higher than achieved in an experimental setup of an electrochemical hydrogen pump (EHP, 6–12 A.mgmetal−1). This implies that the EHPs operate with a significant mass transport limitation. Additionally, poison tolerances of catalysts using low concentrations of 20 ppm CO produced transient responses over ca. 500 s which correctly followed the CO tolerances determined from EHPs (PtRu/C &gt; Pt/C &gt; PtNi/C). A model of the kinetic transient responses on the floating electrode is provided which aids in describing the catalytic behaviour in poisoned environments.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.118734</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon monoxide ; Catalysts ; Electrocatalysis ; Electrocatalysts ; Electrochemical purification ; Electrochemistry ; Electrodes ; Hydrogen ; Hydrogen pump ; Intermetallic compounds ; Low concentrations ; Mass transport ; Oxidation ; Tolerances ; Transient response</subject><ispartof>Applied catalysis. B, Environmental, 2020-07, Vol.268, p.118734, Article 118734</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 5, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-74ebc1ec3819f28fc622ab9d39c5dd00350344ebe5ec0732ce2acf6caef354ad3</citedby><cites>FETCH-LOGICAL-c380t-74ebc1ec3819f28fc622ab9d39c5dd00350344ebe5ec0732ce2acf6caef354ad3</cites><orcidid>0000-0002-5790-9683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2020.118734$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Jackson, C.</creatorcontrib><creatorcontrib>Raymakers, L.F.J.M.</creatorcontrib><creatorcontrib>Mulder, M.J.J.</creatorcontrib><creatorcontrib>Kucernak, A.R.J.</creatorcontrib><title>Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Poison tolerance of electrocatalysts tested in- and ex-situ during hydrogen oxidation.•Floating electrode measurements mimic Electrochemical Hydrogen Pump (EHP) poisoning.•Hydrogen activities measured on the floating electrode were 7x higher than in an EHP.•Electrochemical model produced which describes CO adsorption and blocking process. Current ex-situ electrochemical characterisation techniques for measuring the hydrogen reaction are insufficient to effectively characterise catalytic behaviour under CO containing environments. We show the high mass transport, floating electrode technique offers a solution as it adequately describes hydrogen oxidation (HOR) and evolution over a wide potential range, as needed for various electrochemical systems. The peak HOR mass activities measured on the floating electrode were 68–93 A.mgmetal-1 - significantly higher than achieved in an experimental setup of an electrochemical hydrogen pump (EHP, 6–12 A.mgmetal−1). This implies that the EHPs operate with a significant mass transport limitation. Additionally, poison tolerances of catalysts using low concentrations of 20 ppm CO produced transient responses over ca. 500 s which correctly followed the CO tolerances determined from EHPs (PtRu/C &gt; Pt/C &gt; PtNi/C). A model of the kinetic transient responses on the floating electrode is provided which aids in describing the catalytic behaviour in poisoned environments.</description><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemical purification</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Hydrogen</subject><subject>Hydrogen pump</subject><subject>Intermetallic compounds</subject><subject>Low concentrations</subject><subject>Mass transport</subject><subject>Oxidation</subject><subject>Tolerances</subject><subject>Transient response</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu2zAQJIoUqJP2D3og0LMcPiRb7qFAYLRJgAC5tGdiTS4tGhKpknQA3_IZ6RflP_IloaOizSmnxS5nZmc5hHzmbM4ZX5zv5jBqyJu5YKKMeLuU9TsyO9ZKtq08ITO2EotKyqX8QE5T2jHGhBTtjDxepIQpOb-l2KPOMRQh6A8p0-5gYtiip6Czu3P5QMEbur6lOfQYwWv8StdhGCG6FDwNlo4YbYjD8YmGTQbn0dD9i3jukHZu29EBUqK50NMYYqZP9w-2D5BfGTD4dP-HZtSdd7_3-LLV-X_2Ohychv6_vXE_jOkjeW-hT_jpbz0jv358_7m-qm5uL6_XFzeVli3L1bLGjeZYGr6yorV6IQRsVkaudGMMY7Jhsi4YbFCzpRQaBWi70IBWNjUYeUa-TLpjDMVcymoX9tGXlUrUsmlqzpumoOoJpWNIKaJVY3QDxIPiTB0jUzs1RaaOkakpskL7NtGwXHDnMKqkHZbfNC6W45UJ7m2BZ73SqhQ</recordid><startdate>20200705</startdate><enddate>20200705</enddate><creator>Jackson, C.</creator><creator>Raymakers, L.F.J.M.</creator><creator>Mulder, M.J.J.</creator><creator>Kucernak, A.R.J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5790-9683</orcidid></search><sort><creationdate>20200705</creationdate><title>Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps</title><author>Jackson, C. ; Raymakers, L.F.J.M. ; Mulder, M.J.J. ; Kucernak, A.R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-74ebc1ec3819f28fc622ab9d39c5dd00350344ebe5ec0732ce2acf6caef354ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemical purification</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Hydrogen</topic><topic>Hydrogen pump</topic><topic>Intermetallic compounds</topic><topic>Low concentrations</topic><topic>Mass transport</topic><topic>Oxidation</topic><topic>Tolerances</topic><topic>Transient response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, C.</creatorcontrib><creatorcontrib>Raymakers, L.F.J.M.</creatorcontrib><creatorcontrib>Mulder, M.J.J.</creatorcontrib><creatorcontrib>Kucernak, A.R.J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, C.</au><au>Raymakers, L.F.J.M.</au><au>Mulder, M.J.J.</au><au>Kucernak, A.R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-07-05</date><risdate>2020</risdate><volume>268</volume><spage>118734</spage><pages>118734-</pages><artnum>118734</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Poison tolerance of electrocatalysts tested in- and ex-situ during hydrogen oxidation.•Floating electrode measurements mimic Electrochemical Hydrogen Pump (EHP) poisoning.•Hydrogen activities measured on the floating electrode were 7x higher than in an EHP.•Electrochemical model produced which describes CO adsorption and blocking process. Current ex-situ electrochemical characterisation techniques for measuring the hydrogen reaction are insufficient to effectively characterise catalytic behaviour under CO containing environments. We show the high mass transport, floating electrode technique offers a solution as it adequately describes hydrogen oxidation (HOR) and evolution over a wide potential range, as needed for various electrochemical systems. The peak HOR mass activities measured on the floating electrode were 68–93 A.mgmetal-1 - significantly higher than achieved in an experimental setup of an electrochemical hydrogen pump (EHP, 6–12 A.mgmetal−1). This implies that the EHPs operate with a significant mass transport limitation. Additionally, poison tolerances of catalysts using low concentrations of 20 ppm CO produced transient responses over ca. 500 s which correctly followed the CO tolerances determined from EHPs (PtRu/C &gt; Pt/C &gt; PtNi/C). A model of the kinetic transient responses on the floating electrode is provided which aids in describing the catalytic behaviour in poisoned environments.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.118734</doi><orcidid>https://orcid.org/0000-0002-5790-9683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-07, Vol.268, p.118734, Article 118734
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2435541155
source Elsevier ScienceDirect Journals
subjects Carbon monoxide
Catalysts
Electrocatalysis
Electrocatalysts
Electrochemical purification
Electrochemistry
Electrodes
Hydrogen
Hydrogen pump
Intermetallic compounds
Low concentrations
Mass transport
Oxidation
Tolerances
Transient response
title Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20electrocatalyst%20hydrogen%20activity%20and%20CO%20tolerance:%20Comparison%20of%20performance%20obtained%20using%20the%20high%20mass%20transport%20%E2%80%98floating%20electrode%E2%80%99%20technique%20and%20in%20electrochemical%20hydrogen%20pumps&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Jackson,%20C.&rft.date=2020-07-05&rft.volume=268&rft.spage=118734&rft.pages=118734-&rft.artnum=118734&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.118734&rft_dat=%3Cproquest_cross%3E2435541155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435541155&rft_id=info:pmid/&rft_els_id=S0926337320301491&rfr_iscdi=true