Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps
[Display omitted] •Poison tolerance of electrocatalysts tested in- and ex-situ during hydrogen oxidation.•Floating electrode measurements mimic Electrochemical Hydrogen Pump (EHP) poisoning.•Hydrogen activities measured on the floating electrode were 7x higher than in an EHP.•Electrochemical model p...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2020-07, Vol.268, p.118734, Article 118734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 118734 |
container_title | Applied catalysis. B, Environmental |
container_volume | 268 |
creator | Jackson, C. Raymakers, L.F.J.M. Mulder, M.J.J. Kucernak, A.R.J. |
description | [Display omitted]
•Poison tolerance of electrocatalysts tested in- and ex-situ during hydrogen oxidation.•Floating electrode measurements mimic Electrochemical Hydrogen Pump (EHP) poisoning.•Hydrogen activities measured on the floating electrode were 7x higher than in an EHP.•Electrochemical model produced which describes CO adsorption and blocking process.
Current ex-situ electrochemical characterisation techniques for measuring the hydrogen reaction are insufficient to effectively characterise catalytic behaviour under CO containing environments. We show the high mass transport, floating electrode technique offers a solution as it adequately describes hydrogen oxidation (HOR) and evolution over a wide potential range, as needed for various electrochemical systems. The peak HOR mass activities measured on the floating electrode were 68–93 A.mgmetal-1 - significantly higher than achieved in an experimental setup of an electrochemical hydrogen pump (EHP, 6–12 A.mgmetal−1). This implies that the EHPs operate with a significant mass transport limitation. Additionally, poison tolerances of catalysts using low concentrations of 20 ppm CO produced transient responses over ca. 500 s which correctly followed the CO tolerances determined from EHPs (PtRu/C > Pt/C > PtNi/C). A model of the kinetic transient responses on the floating electrode is provided which aids in describing the catalytic behaviour in poisoned environments. |
doi_str_mv | 10.1016/j.apcatb.2020.118734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435541155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320301491</els_id><sourcerecordid>2435541155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-74ebc1ec3819f28fc622ab9d39c5dd00350344ebe5ec0732ce2acf6caef354ad3</originalsourceid><addsrcrecordid>eNp9Uctu2zAQJIoUqJP2D3og0LMcPiRb7qFAYLRJgAC5tGdiTS4tGhKpknQA3_IZ6RflP_IloaOizSmnxS5nZmc5hHzmbM4ZX5zv5jBqyJu5YKKMeLuU9TsyO9ZKtq08ITO2EotKyqX8QE5T2jHGhBTtjDxepIQpOb-l2KPOMRQh6A8p0-5gYtiip6Czu3P5QMEbur6lOfQYwWv8StdhGCG6FDwNlo4YbYjD8YmGTQbn0dD9i3jukHZu29EBUqK50NMYYqZP9w-2D5BfGTD4dP-HZtSdd7_3-LLV-X_2Ohychv6_vXE_jOkjeW-hT_jpbz0jv358_7m-qm5uL6_XFzeVli3L1bLGjeZYGr6yorV6IQRsVkaudGMMY7Jhsi4YbFCzpRQaBWi70IBWNjUYeUa-TLpjDMVcymoX9tGXlUrUsmlqzpumoOoJpWNIKaJVY3QDxIPiTB0jUzs1RaaOkakpskL7NtGwXHDnMKqkHZbfNC6W45UJ7m2BZ73SqhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435541155</pqid></control><display><type>article</type><title>Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps</title><source>Elsevier ScienceDirect Journals</source><creator>Jackson, C. ; Raymakers, L.F.J.M. ; Mulder, M.J.J. ; Kucernak, A.R.J.</creator><creatorcontrib>Jackson, C. ; Raymakers, L.F.J.M. ; Mulder, M.J.J. ; Kucernak, A.R.J.</creatorcontrib><description>[Display omitted]
•Poison tolerance of electrocatalysts tested in- and ex-situ during hydrogen oxidation.•Floating electrode measurements mimic Electrochemical Hydrogen Pump (EHP) poisoning.•Hydrogen activities measured on the floating electrode were 7x higher than in an EHP.•Electrochemical model produced which describes CO adsorption and blocking process.
Current ex-situ electrochemical characterisation techniques for measuring the hydrogen reaction are insufficient to effectively characterise catalytic behaviour under CO containing environments. We show the high mass transport, floating electrode technique offers a solution as it adequately describes hydrogen oxidation (HOR) and evolution over a wide potential range, as needed for various electrochemical systems. The peak HOR mass activities measured on the floating electrode were 68–93 A.mgmetal-1 - significantly higher than achieved in an experimental setup of an electrochemical hydrogen pump (EHP, 6–12 A.mgmetal−1). This implies that the EHPs operate with a significant mass transport limitation. Additionally, poison tolerances of catalysts using low concentrations of 20 ppm CO produced transient responses over ca. 500 s which correctly followed the CO tolerances determined from EHPs (PtRu/C > Pt/C > PtNi/C). A model of the kinetic transient responses on the floating electrode is provided which aids in describing the catalytic behaviour in poisoned environments.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.118734</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon monoxide ; Catalysts ; Electrocatalysis ; Electrocatalysts ; Electrochemical purification ; Electrochemistry ; Electrodes ; Hydrogen ; Hydrogen pump ; Intermetallic compounds ; Low concentrations ; Mass transport ; Oxidation ; Tolerances ; Transient response</subject><ispartof>Applied catalysis. B, Environmental, 2020-07, Vol.268, p.118734, Article 118734</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 5, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-74ebc1ec3819f28fc622ab9d39c5dd00350344ebe5ec0732ce2acf6caef354ad3</citedby><cites>FETCH-LOGICAL-c380t-74ebc1ec3819f28fc622ab9d39c5dd00350344ebe5ec0732ce2acf6caef354ad3</cites><orcidid>0000-0002-5790-9683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2020.118734$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Jackson, C.</creatorcontrib><creatorcontrib>Raymakers, L.F.J.M.</creatorcontrib><creatorcontrib>Mulder, M.J.J.</creatorcontrib><creatorcontrib>Kucernak, A.R.J.</creatorcontrib><title>Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
•Poison tolerance of electrocatalysts tested in- and ex-situ during hydrogen oxidation.•Floating electrode measurements mimic Electrochemical Hydrogen Pump (EHP) poisoning.•Hydrogen activities measured on the floating electrode were 7x higher than in an EHP.•Electrochemical model produced which describes CO adsorption and blocking process.
Current ex-situ electrochemical characterisation techniques for measuring the hydrogen reaction are insufficient to effectively characterise catalytic behaviour under CO containing environments. We show the high mass transport, floating electrode technique offers a solution as it adequately describes hydrogen oxidation (HOR) and evolution over a wide potential range, as needed for various electrochemical systems. The peak HOR mass activities measured on the floating electrode were 68–93 A.mgmetal-1 - significantly higher than achieved in an experimental setup of an electrochemical hydrogen pump (EHP, 6–12 A.mgmetal−1). This implies that the EHPs operate with a significant mass transport limitation. Additionally, poison tolerances of catalysts using low concentrations of 20 ppm CO produced transient responses over ca. 500 s which correctly followed the CO tolerances determined from EHPs (PtRu/C > Pt/C > PtNi/C). A model of the kinetic transient responses on the floating electrode is provided which aids in describing the catalytic behaviour in poisoned environments.</description><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemical purification</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Hydrogen</subject><subject>Hydrogen pump</subject><subject>Intermetallic compounds</subject><subject>Low concentrations</subject><subject>Mass transport</subject><subject>Oxidation</subject><subject>Tolerances</subject><subject>Transient response</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9Uctu2zAQJIoUqJP2D3og0LMcPiRb7qFAYLRJgAC5tGdiTS4tGhKpknQA3_IZ6RflP_IloaOizSmnxS5nZmc5hHzmbM4ZX5zv5jBqyJu5YKKMeLuU9TsyO9ZKtq08ITO2EotKyqX8QE5T2jHGhBTtjDxepIQpOb-l2KPOMRQh6A8p0-5gYtiip6Czu3P5QMEbur6lOfQYwWv8StdhGCG6FDwNlo4YbYjD8YmGTQbn0dD9i3jukHZu29EBUqK50NMYYqZP9w-2D5BfGTD4dP-HZtSdd7_3-LLV-X_2Ohychv6_vXE_jOkjeW-hT_jpbz0jv358_7m-qm5uL6_XFzeVli3L1bLGjeZYGr6yorV6IQRsVkaudGMMY7Jhsi4YbFCzpRQaBWi70IBWNjUYeUa-TLpjDMVcymoX9tGXlUrUsmlqzpumoOoJpWNIKaJVY3QDxIPiTB0jUzs1RaaOkakpskL7NtGwXHDnMKqkHZbfNC6W45UJ7m2BZ73SqhQ</recordid><startdate>20200705</startdate><enddate>20200705</enddate><creator>Jackson, C.</creator><creator>Raymakers, L.F.J.M.</creator><creator>Mulder, M.J.J.</creator><creator>Kucernak, A.R.J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5790-9683</orcidid></search><sort><creationdate>20200705</creationdate><title>Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps</title><author>Jackson, C. ; Raymakers, L.F.J.M. ; Mulder, M.J.J. ; Kucernak, A.R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-74ebc1ec3819f28fc622ab9d39c5dd00350344ebe5ec0732ce2acf6caef354ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemical purification</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Hydrogen</topic><topic>Hydrogen pump</topic><topic>Intermetallic compounds</topic><topic>Low concentrations</topic><topic>Mass transport</topic><topic>Oxidation</topic><topic>Tolerances</topic><topic>Transient response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, C.</creatorcontrib><creatorcontrib>Raymakers, L.F.J.M.</creatorcontrib><creatorcontrib>Mulder, M.J.J.</creatorcontrib><creatorcontrib>Kucernak, A.R.J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, C.</au><au>Raymakers, L.F.J.M.</au><au>Mulder, M.J.J.</au><au>Kucernak, A.R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-07-05</date><risdate>2020</risdate><volume>268</volume><spage>118734</spage><pages>118734-</pages><artnum>118734</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
•Poison tolerance of electrocatalysts tested in- and ex-situ during hydrogen oxidation.•Floating electrode measurements mimic Electrochemical Hydrogen Pump (EHP) poisoning.•Hydrogen activities measured on the floating electrode were 7x higher than in an EHP.•Electrochemical model produced which describes CO adsorption and blocking process.
Current ex-situ electrochemical characterisation techniques for measuring the hydrogen reaction are insufficient to effectively characterise catalytic behaviour under CO containing environments. We show the high mass transport, floating electrode technique offers a solution as it adequately describes hydrogen oxidation (HOR) and evolution over a wide potential range, as needed for various electrochemical systems. The peak HOR mass activities measured on the floating electrode were 68–93 A.mgmetal-1 - significantly higher than achieved in an experimental setup of an electrochemical hydrogen pump (EHP, 6–12 A.mgmetal−1). This implies that the EHPs operate with a significant mass transport limitation. Additionally, poison tolerances of catalysts using low concentrations of 20 ppm CO produced transient responses over ca. 500 s which correctly followed the CO tolerances determined from EHPs (PtRu/C > Pt/C > PtNi/C). A model of the kinetic transient responses on the floating electrode is provided which aids in describing the catalytic behaviour in poisoned environments.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.118734</doi><orcidid>https://orcid.org/0000-0002-5790-9683</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2020-07, Vol.268, p.118734, Article 118734 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2435541155 |
source | Elsevier ScienceDirect Journals |
subjects | Carbon monoxide Catalysts Electrocatalysis Electrocatalysts Electrochemical purification Electrochemistry Electrodes Hydrogen Hydrogen pump Intermetallic compounds Low concentrations Mass transport Oxidation Tolerances Transient response |
title | Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’ technique and in electrochemical hydrogen pumps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20electrocatalyst%20hydrogen%20activity%20and%20CO%20tolerance:%20Comparison%20of%20performance%20obtained%20using%20the%20high%20mass%20transport%20%E2%80%98floating%20electrode%E2%80%99%20technique%20and%20in%20electrochemical%20hydrogen%20pumps&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Jackson,%20C.&rft.date=2020-07-05&rft.volume=268&rft.spage=118734&rft.pages=118734-&rft.artnum=118734&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.118734&rft_dat=%3Cproquest_cross%3E2435541155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435541155&rft_id=info:pmid/&rft_els_id=S0926337320301491&rfr_iscdi=true |