Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface

The main purpose of this article is to investigate three-dimensional steady rotating flow of rate type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous space via Darcy–Forchheimer relation. Flow caused by the exponential stretchable surface of shee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied nanoscience 2020-08, Vol.10 (8), p.2965-2975
Hauptverfasser: Rashid, Sadia, Khan, M. Ijaz, Hayat, T., Ayub, M., Alsaedi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2975
container_issue 8
container_start_page 2965
container_title Applied nanoscience
container_volume 10
creator Rashid, Sadia
Khan, M. Ijaz
Hayat, T.
Ayub, M.
Alsaedi, A.
description The main purpose of this article is to investigate three-dimensional steady rotating flow of rate type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous space via Darcy–Forchheimer relation. Flow caused by the exponential stretchable surface of sheet. Chemical reaction along with Arrhenius energy is considered at the surface. Energy expression is modeled subject to heat source/sink and radiation flux. Appropriate transformations leads to ordinary ones. Homotopy method is implemented for the series solutions. Pertinent parameters are discussed graphically. Special consideration is given to the engineering quantities such as Sherwood and Nusselt numbers and discussed numerically through tabular form. Temperature distribution enhances versus higher radiation and heat source/sink parameter while decays for larger Prandtl number. Furthermore, velocity shows decreasing trend through larger porosity and Deborah number.
doi_str_mv 10.1007/s13204-019-01008-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435208163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435208163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-3e1b7a30fb394612aa0970b0d2cc5d2a35792e3b5c2d6a12f28546ccad8fb2cd3</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhSMEEhX0AqwssQ6M7TiJl6hQQCpiA2tr4jhNqjQudvq34w7ckJNgCIJdLVke633vzeJF0QWFKwqQXXvKGSQxUBkuQB6zo2jEqIRYCJod_80gT6Ox9wsIRyRZysUocrfo9P7z_WNqna5r0yyNI1Vrt8RW5Al3W9O24b9uSrJt-pqg7psN9o3tiOmMm-8JdiXpa-OW2BKHZTOIdhNyMEC7le1M1zdB9WtXoTbn0UmFrTfj3_csep3evUwe4tnz_ePkZhZrnid9zA0tMuRQFVwmKWWIIDMooGRai5IhF5lkhhdCszJFyiqWiyTVGsu8Kpgu-Vl0OeSunH1bG9-rhV27LqxULOGCQU5TfpCiksqEppAGig2UdtZ7Zyq1cs0S3V5RUN8lqKEEFUpQPyUoFkx8MPkAd3Pj_qMPuL4ABsiLlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191941606</pqid></control><display><type>article</type><title>Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rashid, Sadia ; Khan, M. Ijaz ; Hayat, T. ; Ayub, M. ; Alsaedi, A.</creator><creatorcontrib>Rashid, Sadia ; Khan, M. Ijaz ; Hayat, T. ; Ayub, M. ; Alsaedi, A.</creatorcontrib><description>The main purpose of this article is to investigate three-dimensional steady rotating flow of rate type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous space via Darcy–Forchheimer relation. Flow caused by the exponential stretchable surface of sheet. Chemical reaction along with Arrhenius energy is considered at the surface. Energy expression is modeled subject to heat source/sink and radiation flux. Appropriate transformations leads to ordinary ones. Homotopy method is implemented for the series solutions. Pertinent parameters are discussed graphically. Special consideration is given to the engineering quantities such as Sherwood and Nusselt numbers and discussed numerically through tabular form. Temperature distribution enhances versus higher radiation and heat source/sink parameter while decays for larger Prandtl number. Furthermore, velocity shows decreasing trend through larger porosity and Deborah number.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-019-01008-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemical reactions ; Chemistry and Materials Science ; Deborah number ; Materials Science ; Mathematical models ; Maxwell fluids ; Membrane Biology ; Nanochemistry ; Nanotechnology ; Nanotechnology and Microengineering ; Organic chemistry ; Original Article ; Parameters ; Porosity ; Prandtl number ; Temperature distribution ; Thermal radiation ; Three dimensional flow</subject><ispartof>Applied nanoscience, 2020-08, Vol.10 (8), p.2965-2975</ispartof><rights>King Abdulaziz City for Science and Technology 2019</rights><rights>Applied Nanoscience is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>King Abdulaziz City for Science and Technology 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-3e1b7a30fb394612aa0970b0d2cc5d2a35792e3b5c2d6a12f28546ccad8fb2cd3</citedby><cites>FETCH-LOGICAL-c384t-3e1b7a30fb394612aa0970b0d2cc5d2a35792e3b5c2d6a12f28546ccad8fb2cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13204-019-01008-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13204-019-01008-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Rashid, Sadia</creatorcontrib><creatorcontrib>Khan, M. Ijaz</creatorcontrib><creatorcontrib>Hayat, T.</creatorcontrib><creatorcontrib>Ayub, M.</creatorcontrib><creatorcontrib>Alsaedi, A.</creatorcontrib><title>Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>The main purpose of this article is to investigate three-dimensional steady rotating flow of rate type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous space via Darcy–Forchheimer relation. Flow caused by the exponential stretchable surface of sheet. Chemical reaction along with Arrhenius energy is considered at the surface. Energy expression is modeled subject to heat source/sink and radiation flux. Appropriate transformations leads to ordinary ones. Homotopy method is implemented for the series solutions. Pertinent parameters are discussed graphically. Special consideration is given to the engineering quantities such as Sherwood and Nusselt numbers and discussed numerically through tabular form. Temperature distribution enhances versus higher radiation and heat source/sink parameter while decays for larger Prandtl number. Furthermore, velocity shows decreasing trend through larger porosity and Deborah number.</description><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Deborah number</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Maxwell fluids</subject><subject>Membrane Biology</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Organic chemistry</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Porosity</subject><subject>Prandtl number</subject><subject>Temperature distribution</subject><subject>Thermal radiation</subject><subject>Three dimensional flow</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1OwzAQhSMEEhX0AqwssQ6M7TiJl6hQQCpiA2tr4jhNqjQudvq34w7ckJNgCIJdLVke633vzeJF0QWFKwqQXXvKGSQxUBkuQB6zo2jEqIRYCJod_80gT6Ox9wsIRyRZysUocrfo9P7z_WNqna5r0yyNI1Vrt8RW5Al3W9O24b9uSrJt-pqg7psN9o3tiOmMm-8JdiXpa-OW2BKHZTOIdhNyMEC7le1M1zdB9WtXoTbn0UmFrTfj3_csep3evUwe4tnz_ePkZhZrnid9zA0tMuRQFVwmKWWIIDMooGRai5IhF5lkhhdCszJFyiqWiyTVGsu8Kpgu-Vl0OeSunH1bG9-rhV27LqxULOGCQU5TfpCiksqEppAGig2UdtZ7Zyq1cs0S3V5RUN8lqKEEFUpQPyUoFkx8MPkAd3Pj_qMPuL4ABsiLlQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Rashid, Sadia</creator><creator>Khan, M. Ijaz</creator><creator>Hayat, T.</creator><creator>Ayub, M.</creator><creator>Alsaedi, A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface</title><author>Rashid, Sadia ; Khan, M. Ijaz ; Hayat, T. ; Ayub, M. ; Alsaedi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-3e1b7a30fb394612aa0970b0d2cc5d2a35792e3b5c2d6a12f28546ccad8fb2cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Deborah number</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Maxwell fluids</topic><topic>Membrane Biology</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Organic chemistry</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Porosity</topic><topic>Prandtl number</topic><topic>Temperature distribution</topic><topic>Thermal radiation</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Sadia</creatorcontrib><creatorcontrib>Khan, M. Ijaz</creatorcontrib><creatorcontrib>Hayat, T.</creatorcontrib><creatorcontrib>Ayub, M.</creatorcontrib><creatorcontrib>Alsaedi, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Sadia</au><au>Khan, M. Ijaz</au><au>Hayat, T.</au><au>Ayub, M.</au><au>Alsaedi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><spage>2965</spage><epage>2975</epage><pages>2965-2975</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>The main purpose of this article is to investigate three-dimensional steady rotating flow of rate type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous space via Darcy–Forchheimer relation. Flow caused by the exponential stretchable surface of sheet. Chemical reaction along with Arrhenius energy is considered at the surface. Energy expression is modeled subject to heat source/sink and radiation flux. Appropriate transformations leads to ordinary ones. Homotopy method is implemented for the series solutions. Pertinent parameters are discussed graphically. Special consideration is given to the engineering quantities such as Sherwood and Nusselt numbers and discussed numerically through tabular form. Temperature distribution enhances versus higher radiation and heat source/sink parameter while decays for larger Prandtl number. Furthermore, velocity shows decreasing trend through larger porosity and Deborah number.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-019-01008-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-5509
ispartof Applied nanoscience, 2020-08, Vol.10 (8), p.2965-2975
issn 2190-5509
2190-5517
language eng
recordid cdi_proquest_journals_2435208163
source SpringerLink Journals - AutoHoldings
subjects Chemical reactions
Chemistry and Materials Science
Deborah number
Materials Science
Mathematical models
Maxwell fluids
Membrane Biology
Nanochemistry
Nanotechnology
Nanotechnology and Microengineering
Organic chemistry
Original Article
Parameters
Porosity
Prandtl number
Temperature distribution
Thermal radiation
Three dimensional flow
title Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Darcy%E2%80%93Forchheimer%20flow%20of%20Maxwell%20fluid%20with%20activation%20energy%20and%20thermal%20radiation%20over%20an%20exponential%20surface&rft.jtitle=Applied%20nanoscience&rft.au=Rashid,%20Sadia&rft.date=2020-08-01&rft.volume=10&rft.issue=8&rft.spage=2965&rft.epage=2975&rft.pages=2965-2975&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-019-01008-2&rft_dat=%3Cproquest_cross%3E2435208163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191941606&rft_id=info:pmid/&rfr_iscdi=true