Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface
The main purpose of this article is to investigate three-dimensional steady rotating flow of rate type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous space via Darcy–Forchheimer relation. Flow caused by the exponential stretchable surface of shee...
Gespeichert in:
Veröffentlicht in: | Applied nanoscience 2020-08, Vol.10 (8), p.2965-2975 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2975 |
---|---|
container_issue | 8 |
container_start_page | 2965 |
container_title | Applied nanoscience |
container_volume | 10 |
creator | Rashid, Sadia Khan, M. Ijaz Hayat, T. Ayub, M. Alsaedi, A. |
description | The main purpose of this article is to investigate three-dimensional steady rotating flow of rate type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous space via Darcy–Forchheimer relation. Flow caused by the exponential stretchable surface of sheet. Chemical reaction along with Arrhenius energy is considered at the surface. Energy expression is modeled subject to heat source/sink and radiation flux. Appropriate transformations leads to ordinary ones. Homotopy method is implemented for the series solutions. Pertinent parameters are discussed graphically. Special consideration is given to the engineering quantities such as Sherwood and Nusselt numbers and discussed numerically through tabular form. Temperature distribution enhances versus higher radiation and heat source/sink parameter while decays for larger Prandtl number. Furthermore, velocity shows decreasing trend through larger porosity and Deborah number. |
doi_str_mv | 10.1007/s13204-019-01008-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435208163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435208163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-3e1b7a30fb394612aa0970b0d2cc5d2a35792e3b5c2d6a12f28546ccad8fb2cd3</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhSMEEhX0AqwssQ6M7TiJl6hQQCpiA2tr4jhNqjQudvq34w7ckJNgCIJdLVke633vzeJF0QWFKwqQXXvKGSQxUBkuQB6zo2jEqIRYCJod_80gT6Ox9wsIRyRZysUocrfo9P7z_WNqna5r0yyNI1Vrt8RW5Al3W9O24b9uSrJt-pqg7psN9o3tiOmMm-8JdiXpa-OW2BKHZTOIdhNyMEC7le1M1zdB9WtXoTbn0UmFrTfj3_csep3evUwe4tnz_ePkZhZrnid9zA0tMuRQFVwmKWWIIDMooGRai5IhF5lkhhdCszJFyiqWiyTVGsu8Kpgu-Vl0OeSunH1bG9-rhV27LqxULOGCQU5TfpCiksqEppAGig2UdtZ7Zyq1cs0S3V5RUN8lqKEEFUpQPyUoFkx8MPkAd3Pj_qMPuL4ABsiLlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191941606</pqid></control><display><type>article</type><title>Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rashid, Sadia ; Khan, M. Ijaz ; Hayat, T. ; Ayub, M. ; Alsaedi, A.</creator><creatorcontrib>Rashid, Sadia ; Khan, M. Ijaz ; Hayat, T. ; Ayub, M. ; Alsaedi, A.</creatorcontrib><description>The main purpose of this article is to investigate three-dimensional steady rotating flow of rate type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous space via Darcy–Forchheimer relation. Flow caused by the exponential stretchable surface of sheet. Chemical reaction along with Arrhenius energy is considered at the surface. Energy expression is modeled subject to heat source/sink and radiation flux. Appropriate transformations leads to ordinary ones. Homotopy method is implemented for the series solutions. Pertinent parameters are discussed graphically. Special consideration is given to the engineering quantities such as Sherwood and Nusselt numbers and discussed numerically through tabular form. Temperature distribution enhances versus higher radiation and heat source/sink parameter while decays for larger Prandtl number. Furthermore, velocity shows decreasing trend through larger porosity and Deborah number.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-019-01008-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemical reactions ; Chemistry and Materials Science ; Deborah number ; Materials Science ; Mathematical models ; Maxwell fluids ; Membrane Biology ; Nanochemistry ; Nanotechnology ; Nanotechnology and Microengineering ; Organic chemistry ; Original Article ; Parameters ; Porosity ; Prandtl number ; Temperature distribution ; Thermal radiation ; Three dimensional flow</subject><ispartof>Applied nanoscience, 2020-08, Vol.10 (8), p.2965-2975</ispartof><rights>King Abdulaziz City for Science and Technology 2019</rights><rights>Applied Nanoscience is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>King Abdulaziz City for Science and Technology 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-3e1b7a30fb394612aa0970b0d2cc5d2a35792e3b5c2d6a12f28546ccad8fb2cd3</citedby><cites>FETCH-LOGICAL-c384t-3e1b7a30fb394612aa0970b0d2cc5d2a35792e3b5c2d6a12f28546ccad8fb2cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13204-019-01008-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13204-019-01008-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Rashid, Sadia</creatorcontrib><creatorcontrib>Khan, M. Ijaz</creatorcontrib><creatorcontrib>Hayat, T.</creatorcontrib><creatorcontrib>Ayub, M.</creatorcontrib><creatorcontrib>Alsaedi, A.</creatorcontrib><title>Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>The main purpose of this article is to investigate three-dimensional steady rotating flow of rate type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous space via Darcy–Forchheimer relation. Flow caused by the exponential stretchable surface of sheet. Chemical reaction along with Arrhenius energy is considered at the surface. Energy expression is modeled subject to heat source/sink and radiation flux. Appropriate transformations leads to ordinary ones. Homotopy method is implemented for the series solutions. Pertinent parameters are discussed graphically. Special consideration is given to the engineering quantities such as Sherwood and Nusselt numbers and discussed numerically through tabular form. Temperature distribution enhances versus higher radiation and heat source/sink parameter while decays for larger Prandtl number. Furthermore, velocity shows decreasing trend through larger porosity and Deborah number.</description><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Deborah number</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Maxwell fluids</subject><subject>Membrane Biology</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Organic chemistry</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Porosity</subject><subject>Prandtl number</subject><subject>Temperature distribution</subject><subject>Thermal radiation</subject><subject>Three dimensional flow</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1OwzAQhSMEEhX0AqwssQ6M7TiJl6hQQCpiA2tr4jhNqjQudvq34w7ckJNgCIJdLVke633vzeJF0QWFKwqQXXvKGSQxUBkuQB6zo2jEqIRYCJod_80gT6Ox9wsIRyRZysUocrfo9P7z_WNqna5r0yyNI1Vrt8RW5Al3W9O24b9uSrJt-pqg7psN9o3tiOmMm-8JdiXpa-OW2BKHZTOIdhNyMEC7le1M1zdB9WtXoTbn0UmFrTfj3_csep3evUwe4tnz_ePkZhZrnid9zA0tMuRQFVwmKWWIIDMooGRai5IhF5lkhhdCszJFyiqWiyTVGsu8Kpgu-Vl0OeSunH1bG9-rhV27LqxULOGCQU5TfpCiksqEppAGig2UdtZ7Zyq1cs0S3V5RUN8lqKEEFUpQPyUoFkx8MPkAd3Pj_qMPuL4ABsiLlQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Rashid, Sadia</creator><creator>Khan, M. Ijaz</creator><creator>Hayat, T.</creator><creator>Ayub, M.</creator><creator>Alsaedi, A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface</title><author>Rashid, Sadia ; Khan, M. Ijaz ; Hayat, T. ; Ayub, M. ; Alsaedi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-3e1b7a30fb394612aa0970b0d2cc5d2a35792e3b5c2d6a12f28546ccad8fb2cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Deborah number</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Maxwell fluids</topic><topic>Membrane Biology</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Organic chemistry</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Porosity</topic><topic>Prandtl number</topic><topic>Temperature distribution</topic><topic>Thermal radiation</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Sadia</creatorcontrib><creatorcontrib>Khan, M. Ijaz</creatorcontrib><creatorcontrib>Hayat, T.</creatorcontrib><creatorcontrib>Ayub, M.</creatorcontrib><creatorcontrib>Alsaedi, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Sadia</au><au>Khan, M. Ijaz</au><au>Hayat, T.</au><au>Ayub, M.</au><au>Alsaedi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><spage>2965</spage><epage>2975</epage><pages>2965-2975</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>The main purpose of this article is to investigate three-dimensional steady rotating flow of rate type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous space via Darcy–Forchheimer relation. Flow caused by the exponential stretchable surface of sheet. Chemical reaction along with Arrhenius energy is considered at the surface. Energy expression is modeled subject to heat source/sink and radiation flux. Appropriate transformations leads to ordinary ones. Homotopy method is implemented for the series solutions. Pertinent parameters are discussed graphically. Special consideration is given to the engineering quantities such as Sherwood and Nusselt numbers and discussed numerically through tabular form. Temperature distribution enhances versus higher radiation and heat source/sink parameter while decays for larger Prandtl number. Furthermore, velocity shows decreasing trend through larger porosity and Deborah number.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-019-01008-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5509 |
ispartof | Applied nanoscience, 2020-08, Vol.10 (8), p.2965-2975 |
issn | 2190-5509 2190-5517 |
language | eng |
recordid | cdi_proquest_journals_2435208163 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chemical reactions Chemistry and Materials Science Deborah number Materials Science Mathematical models Maxwell fluids Membrane Biology Nanochemistry Nanotechnology Nanotechnology and Microengineering Organic chemistry Original Article Parameters Porosity Prandtl number Temperature distribution Thermal radiation Three dimensional flow |
title | Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Darcy%E2%80%93Forchheimer%20flow%20of%20Maxwell%20fluid%20with%20activation%20energy%20and%20thermal%20radiation%20over%20an%20exponential%20surface&rft.jtitle=Applied%20nanoscience&rft.au=Rashid,%20Sadia&rft.date=2020-08-01&rft.volume=10&rft.issue=8&rft.spage=2965&rft.epage=2975&rft.pages=2965-2975&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-019-01008-2&rft_dat=%3Cproquest_cross%3E2435208163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191941606&rft_id=info:pmid/&rfr_iscdi=true |