Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity

Among the fabrication of the nano-biometerials, the bioconvection of nanoparticles attained the utmost importance in this decade. Therefore, this theoretical continuation is performed to utilize the bioconvected flow of Williamson nanofluid caused by an oscillatory stretching surface. The flow is ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied nanoscience 2020-08, Vol.10 (8), p.3325-3336
Hauptverfasser: Khan, Sami Ullah, Shehzad, Sabir Ali, Ali, Nasir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3336
container_issue 8
container_start_page 3325
container_title Applied nanoscience
container_volume 10
creator Khan, Sami Ullah
Shehzad, Sabir Ali
Ali, Nasir
description Among the fabrication of the nano-biometerials, the bioconvection of nanoparticles attained the utmost importance in this decade. Therefore, this theoretical continuation is performed to utilize the bioconvected flow of Williamson nanofluid caused by an oscillatory stretching surface. The flow is generated due to periodic motion of the sheet. The energy equation is modified by variable thermal conductivity. The significance of present flow problem increases by utilizing the thermophoresis and Brownian movement factors. The available formulated partial differential equations are promoted into non-dimensional structure via similarity variables. The analytical solution is fulfilled using convergent technique. The implications of promising parameters on velocity, temperature profile, nanoparticles volume fraction and microorganisms profile are evaluated graphically. Locally constituted physically expressions such as Nusselt number, Sherwood number and motile density number are treated numerically as well as graphically. The presence of variable thermal conductivity, thermophoresis and Brownian motion effects are more frequent for enhancement of heat transfer. The detected observation can involve the theoretical significance in various engineering processes, bio-fuel cells, solar energy system and enhancement of extrusion systems.
doi_str_mv 10.1007/s13204-020-01282-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435207732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435207732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-da5bb4c999ec5135630483fe706cde95eca632c3f8705d9c6a763f5c8ec9d7c13</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIVKU_wMkS54AfcRwfoeIlVeIC4mi5ttO6SuzWdlqVr8cQBDf2sqvZmVntFMUlgtcIQnYTEcGwKiGGJUS4wSU9KSYYcVhSitjp7wz5eTGLcQNz0YrVhE4Kd2e98m5vVLLegbbzB-Bb0MuVM8l-GA3ebddZ2ce8ddL5zu4Gq8HBpjXofbKdAT6spLOxj0A6DfYyWLnMcFqb0MsOZHs9ZPu9TceL4qyVXTSznz4t3h7uX-dP5eLl8Xl-uygVoXUqtaTLZaU450ZRlCECq4a0hsFaacOpUbImWJG2YZBqrmqZv2mpaozimilEpsXV6LsNfjeYmMTGD8HlkwJXhGLIGMGZhUeWCj7GYFqxDbaX4SgQFF_RijFakaMV39EKmkVkFMVMdisT_qz_UX0Cdcx-cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435207732</pqid></control><display><type>article</type><title>Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khan, Sami Ullah ; Shehzad, Sabir Ali ; Ali, Nasir</creator><creatorcontrib>Khan, Sami Ullah ; Shehzad, Sabir Ali ; Ali, Nasir</creatorcontrib><description>Among the fabrication of the nano-biometerials, the bioconvection of nanoparticles attained the utmost importance in this decade. Therefore, this theoretical continuation is performed to utilize the bioconvected flow of Williamson nanofluid caused by an oscillatory stretching surface. The flow is generated due to periodic motion of the sheet. The energy equation is modified by variable thermal conductivity. The significance of present flow problem increases by utilizing the thermophoresis and Brownian movement factors. The available formulated partial differential equations are promoted into non-dimensional structure via similarity variables. The analytical solution is fulfilled using convergent technique. The implications of promising parameters on velocity, temperature profile, nanoparticles volume fraction and microorganisms profile are evaluated graphically. Locally constituted physically expressions such as Nusselt number, Sherwood number and motile density number are treated numerically as well as graphically. The presence of variable thermal conductivity, thermophoresis and Brownian motion effects are more frequent for enhancement of heat transfer. The detected observation can involve the theoretical significance in various engineering processes, bio-fuel cells, solar energy system and enhancement of extrusion systems.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-020-01282-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemical fuel cells ; Brownian motion ; Chemistry and Materials Science ; Computational fluid dynamics ; Differential thermal analysis ; Exact solutions ; Extrusion ; Fluid flow ; Heat conductivity ; Heat transfer ; Materials Science ; Membrane Biology ; Microorganisms ; Motion effects ; Nanochemistry ; Nanofluids ; Nanoparticles ; Nanotechnology ; Nanotechnology and Microengineering ; Original Article ; Partial differential equations ; Solar energy ; Temperature profiles ; Thermal conductivity ; Thermal energy ; Thermophoresis</subject><ispartof>Applied nanoscience, 2020-08, Vol.10 (8), p.3325-3336</ispartof><rights>King Abdulaziz City for Science and Technology 2020</rights><rights>King Abdulaziz City for Science and Technology 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-da5bb4c999ec5135630483fe706cde95eca632c3f8705d9c6a763f5c8ec9d7c13</citedby><cites>FETCH-LOGICAL-c356t-da5bb4c999ec5135630483fe706cde95eca632c3f8705d9c6a763f5c8ec9d7c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13204-020-01282-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13204-020-01282-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Khan, Sami Ullah</creatorcontrib><creatorcontrib>Shehzad, Sabir Ali</creatorcontrib><creatorcontrib>Ali, Nasir</creatorcontrib><title>Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>Among the fabrication of the nano-biometerials, the bioconvection of nanoparticles attained the utmost importance in this decade. Therefore, this theoretical continuation is performed to utilize the bioconvected flow of Williamson nanofluid caused by an oscillatory stretching surface. The flow is generated due to periodic motion of the sheet. The energy equation is modified by variable thermal conductivity. The significance of present flow problem increases by utilizing the thermophoresis and Brownian movement factors. The available formulated partial differential equations are promoted into non-dimensional structure via similarity variables. The analytical solution is fulfilled using convergent technique. The implications of promising parameters on velocity, temperature profile, nanoparticles volume fraction and microorganisms profile are evaluated graphically. Locally constituted physically expressions such as Nusselt number, Sherwood number and motile density number are treated numerically as well as graphically. The presence of variable thermal conductivity, thermophoresis and Brownian motion effects are more frequent for enhancement of heat transfer. The detected observation can involve the theoretical significance in various engineering processes, bio-fuel cells, solar energy system and enhancement of extrusion systems.</description><subject>Biochemical fuel cells</subject><subject>Brownian motion</subject><subject>Chemistry and Materials Science</subject><subject>Computational fluid dynamics</subject><subject>Differential thermal analysis</subject><subject>Exact solutions</subject><subject>Extrusion</subject><subject>Fluid flow</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Membrane Biology</subject><subject>Microorganisms</subject><subject>Motion effects</subject><subject>Nanochemistry</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Original Article</subject><subject>Partial differential equations</subject><subject>Solar energy</subject><subject>Temperature profiles</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermophoresis</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQjBBIVKU_wMkS54AfcRwfoeIlVeIC4mi5ttO6SuzWdlqVr8cQBDf2sqvZmVntFMUlgtcIQnYTEcGwKiGGJUS4wSU9KSYYcVhSitjp7wz5eTGLcQNz0YrVhE4Kd2e98m5vVLLegbbzB-Bb0MuVM8l-GA3ebddZ2ce8ddL5zu4Gq8HBpjXofbKdAT6spLOxj0A6DfYyWLnMcFqb0MsOZHs9ZPu9TceL4qyVXTSznz4t3h7uX-dP5eLl8Xl-uygVoXUqtaTLZaU450ZRlCECq4a0hsFaacOpUbImWJG2YZBqrmqZv2mpaozimilEpsXV6LsNfjeYmMTGD8HlkwJXhGLIGMGZhUeWCj7GYFqxDbaX4SgQFF_RijFakaMV39EKmkVkFMVMdisT_qz_UX0Cdcx-cA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Khan, Sami Ullah</creator><creator>Shehzad, Sabir Ali</creator><creator>Ali, Nasir</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity</title><author>Khan, Sami Ullah ; Shehzad, Sabir Ali ; Ali, Nasir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-da5bb4c999ec5135630483fe706cde95eca632c3f8705d9c6a763f5c8ec9d7c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemical fuel cells</topic><topic>Brownian motion</topic><topic>Chemistry and Materials Science</topic><topic>Computational fluid dynamics</topic><topic>Differential thermal analysis</topic><topic>Exact solutions</topic><topic>Extrusion</topic><topic>Fluid flow</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Membrane Biology</topic><topic>Microorganisms</topic><topic>Motion effects</topic><topic>Nanochemistry</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Original Article</topic><topic>Partial differential equations</topic><topic>Solar energy</topic><topic>Temperature profiles</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermophoresis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Sami Ullah</creatorcontrib><creatorcontrib>Shehzad, Sabir Ali</creatorcontrib><creatorcontrib>Ali, Nasir</creatorcontrib><collection>CrossRef</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Sami Ullah</au><au>Shehzad, Sabir Ali</au><au>Ali, Nasir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><spage>3325</spage><epage>3336</epage><pages>3325-3336</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>Among the fabrication of the nano-biometerials, the bioconvection of nanoparticles attained the utmost importance in this decade. Therefore, this theoretical continuation is performed to utilize the bioconvected flow of Williamson nanofluid caused by an oscillatory stretching surface. The flow is generated due to periodic motion of the sheet. The energy equation is modified by variable thermal conductivity. The significance of present flow problem increases by utilizing the thermophoresis and Brownian movement factors. The available formulated partial differential equations are promoted into non-dimensional structure via similarity variables. The analytical solution is fulfilled using convergent technique. The implications of promising parameters on velocity, temperature profile, nanoparticles volume fraction and microorganisms profile are evaluated graphically. Locally constituted physically expressions such as Nusselt number, Sherwood number and motile density number are treated numerically as well as graphically. The presence of variable thermal conductivity, thermophoresis and Brownian motion effects are more frequent for enhancement of heat transfer. The detected observation can involve the theoretical significance in various engineering processes, bio-fuel cells, solar energy system and enhancement of extrusion systems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-020-01282-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-5509
ispartof Applied nanoscience, 2020-08, Vol.10 (8), p.3325-3336
issn 2190-5509
2190-5517
language eng
recordid cdi_proquest_journals_2435207732
source SpringerLink Journals - AutoHoldings
subjects Biochemical fuel cells
Brownian motion
Chemistry and Materials Science
Computational fluid dynamics
Differential thermal analysis
Exact solutions
Extrusion
Fluid flow
Heat conductivity
Heat transfer
Materials Science
Membrane Biology
Microorganisms
Motion effects
Nanochemistry
Nanofluids
Nanoparticles
Nanotechnology
Nanotechnology and Microengineering
Original Article
Partial differential equations
Solar energy
Temperature profiles
Thermal conductivity
Thermal energy
Thermophoresis
title Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioconvection%20flow%20of%20magnetized%20Williamson%20nanoliquid%20with%20motile%20organisms%20and%20variable%20thermal%20conductivity&rft.jtitle=Applied%20nanoscience&rft.au=Khan,%20Sami%20Ullah&rft.date=2020-08-01&rft.volume=10&rft.issue=8&rft.spage=3325&rft.epage=3336&rft.pages=3325-3336&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-020-01282-5&rft_dat=%3Cproquest_cross%3E2435207732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435207732&rft_id=info:pmid/&rfr_iscdi=true