Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity
Among the fabrication of the nano-biometerials, the bioconvection of nanoparticles attained the utmost importance in this decade. Therefore, this theoretical continuation is performed to utilize the bioconvected flow of Williamson nanofluid caused by an oscillatory stretching surface. The flow is ge...
Gespeichert in:
Veröffentlicht in: | Applied nanoscience 2020-08, Vol.10 (8), p.3325-3336 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3336 |
---|---|
container_issue | 8 |
container_start_page | 3325 |
container_title | Applied nanoscience |
container_volume | 10 |
creator | Khan, Sami Ullah Shehzad, Sabir Ali Ali, Nasir |
description | Among the fabrication of the nano-biometerials, the bioconvection of nanoparticles attained the utmost importance in this decade. Therefore, this theoretical continuation is performed to utilize the bioconvected flow of Williamson nanofluid caused by an oscillatory stretching surface. The flow is generated due to periodic motion of the sheet. The energy equation is modified by variable thermal conductivity. The significance of present flow problem increases by utilizing the thermophoresis and Brownian movement factors. The available formulated partial differential equations are promoted into non-dimensional structure via similarity variables. The analytical solution is fulfilled using convergent technique. The implications of promising parameters on velocity, temperature profile, nanoparticles volume fraction and microorganisms profile are evaluated graphically. Locally constituted physically expressions such as Nusselt number, Sherwood number and motile density number are treated numerically as well as graphically. The presence of variable thermal conductivity, thermophoresis and Brownian motion effects are more frequent for enhancement of heat transfer. The detected observation can involve the theoretical significance in various engineering processes, bio-fuel cells, solar energy system and enhancement of extrusion systems. |
doi_str_mv | 10.1007/s13204-020-01282-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435207732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435207732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-da5bb4c999ec5135630483fe706cde95eca632c3f8705d9c6a763f5c8ec9d7c13</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIVKU_wMkS54AfcRwfoeIlVeIC4mi5ttO6SuzWdlqVr8cQBDf2sqvZmVntFMUlgtcIQnYTEcGwKiGGJUS4wSU9KSYYcVhSitjp7wz5eTGLcQNz0YrVhE4Kd2e98m5vVLLegbbzB-Bb0MuVM8l-GA3ebddZ2ce8ddL5zu4Gq8HBpjXofbKdAT6spLOxj0A6DfYyWLnMcFqb0MsOZHs9ZPu9TceL4qyVXTSznz4t3h7uX-dP5eLl8Xl-uygVoXUqtaTLZaU450ZRlCECq4a0hsFaacOpUbImWJG2YZBqrmqZv2mpaozimilEpsXV6LsNfjeYmMTGD8HlkwJXhGLIGMGZhUeWCj7GYFqxDbaX4SgQFF_RijFakaMV39EKmkVkFMVMdisT_qz_UX0Cdcx-cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435207732</pqid></control><display><type>article</type><title>Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khan, Sami Ullah ; Shehzad, Sabir Ali ; Ali, Nasir</creator><creatorcontrib>Khan, Sami Ullah ; Shehzad, Sabir Ali ; Ali, Nasir</creatorcontrib><description>Among the fabrication of the nano-biometerials, the bioconvection of nanoparticles attained the utmost importance in this decade. Therefore, this theoretical continuation is performed to utilize the bioconvected flow of Williamson nanofluid caused by an oscillatory stretching surface. The flow is generated due to periodic motion of the sheet. The energy equation is modified by variable thermal conductivity. The significance of present flow problem increases by utilizing the thermophoresis and Brownian movement factors. The available formulated partial differential equations are promoted into non-dimensional structure via similarity variables. The analytical solution is fulfilled using convergent technique. The implications of promising parameters on velocity, temperature profile, nanoparticles volume fraction and microorganisms profile are evaluated graphically. Locally constituted physically expressions such as Nusselt number, Sherwood number and motile density number are treated numerically as well as graphically. The presence of variable thermal conductivity, thermophoresis and Brownian motion effects are more frequent for enhancement of heat transfer. The detected observation can involve the theoretical significance in various engineering processes, bio-fuel cells, solar energy system and enhancement of extrusion systems.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-020-01282-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemical fuel cells ; Brownian motion ; Chemistry and Materials Science ; Computational fluid dynamics ; Differential thermal analysis ; Exact solutions ; Extrusion ; Fluid flow ; Heat conductivity ; Heat transfer ; Materials Science ; Membrane Biology ; Microorganisms ; Motion effects ; Nanochemistry ; Nanofluids ; Nanoparticles ; Nanotechnology ; Nanotechnology and Microengineering ; Original Article ; Partial differential equations ; Solar energy ; Temperature profiles ; Thermal conductivity ; Thermal energy ; Thermophoresis</subject><ispartof>Applied nanoscience, 2020-08, Vol.10 (8), p.3325-3336</ispartof><rights>King Abdulaziz City for Science and Technology 2020</rights><rights>King Abdulaziz City for Science and Technology 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-da5bb4c999ec5135630483fe706cde95eca632c3f8705d9c6a763f5c8ec9d7c13</citedby><cites>FETCH-LOGICAL-c356t-da5bb4c999ec5135630483fe706cde95eca632c3f8705d9c6a763f5c8ec9d7c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13204-020-01282-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13204-020-01282-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Khan, Sami Ullah</creatorcontrib><creatorcontrib>Shehzad, Sabir Ali</creatorcontrib><creatorcontrib>Ali, Nasir</creatorcontrib><title>Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>Among the fabrication of the nano-biometerials, the bioconvection of nanoparticles attained the utmost importance in this decade. Therefore, this theoretical continuation is performed to utilize the bioconvected flow of Williamson nanofluid caused by an oscillatory stretching surface. The flow is generated due to periodic motion of the sheet. The energy equation is modified by variable thermal conductivity. The significance of present flow problem increases by utilizing the thermophoresis and Brownian movement factors. The available formulated partial differential equations are promoted into non-dimensional structure via similarity variables. The analytical solution is fulfilled using convergent technique. The implications of promising parameters on velocity, temperature profile, nanoparticles volume fraction and microorganisms profile are evaluated graphically. Locally constituted physically expressions such as Nusselt number, Sherwood number and motile density number are treated numerically as well as graphically. The presence of variable thermal conductivity, thermophoresis and Brownian motion effects are more frequent for enhancement of heat transfer. The detected observation can involve the theoretical significance in various engineering processes, bio-fuel cells, solar energy system and enhancement of extrusion systems.</description><subject>Biochemical fuel cells</subject><subject>Brownian motion</subject><subject>Chemistry and Materials Science</subject><subject>Computational fluid dynamics</subject><subject>Differential thermal analysis</subject><subject>Exact solutions</subject><subject>Extrusion</subject><subject>Fluid flow</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Membrane Biology</subject><subject>Microorganisms</subject><subject>Motion effects</subject><subject>Nanochemistry</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Original Article</subject><subject>Partial differential equations</subject><subject>Solar energy</subject><subject>Temperature profiles</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermophoresis</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQjBBIVKU_wMkS54AfcRwfoeIlVeIC4mi5ttO6SuzWdlqVr8cQBDf2sqvZmVntFMUlgtcIQnYTEcGwKiGGJUS4wSU9KSYYcVhSitjp7wz5eTGLcQNz0YrVhE4Kd2e98m5vVLLegbbzB-Bb0MuVM8l-GA3ebddZ2ce8ddL5zu4Gq8HBpjXofbKdAT6spLOxj0A6DfYyWLnMcFqb0MsOZHs9ZPu9TceL4qyVXTSznz4t3h7uX-dP5eLl8Xl-uygVoXUqtaTLZaU450ZRlCECq4a0hsFaacOpUbImWJG2YZBqrmqZv2mpaozimilEpsXV6LsNfjeYmMTGD8HlkwJXhGLIGMGZhUeWCj7GYFqxDbaX4SgQFF_RijFakaMV39EKmkVkFMVMdisT_qz_UX0Cdcx-cA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Khan, Sami Ullah</creator><creator>Shehzad, Sabir Ali</creator><creator>Ali, Nasir</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity</title><author>Khan, Sami Ullah ; Shehzad, Sabir Ali ; Ali, Nasir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-da5bb4c999ec5135630483fe706cde95eca632c3f8705d9c6a763f5c8ec9d7c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemical fuel cells</topic><topic>Brownian motion</topic><topic>Chemistry and Materials Science</topic><topic>Computational fluid dynamics</topic><topic>Differential thermal analysis</topic><topic>Exact solutions</topic><topic>Extrusion</topic><topic>Fluid flow</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Membrane Biology</topic><topic>Microorganisms</topic><topic>Motion effects</topic><topic>Nanochemistry</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Original Article</topic><topic>Partial differential equations</topic><topic>Solar energy</topic><topic>Temperature profiles</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermophoresis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Sami Ullah</creatorcontrib><creatorcontrib>Shehzad, Sabir Ali</creatorcontrib><creatorcontrib>Ali, Nasir</creatorcontrib><collection>CrossRef</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Sami Ullah</au><au>Shehzad, Sabir Ali</au><au>Ali, Nasir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><spage>3325</spage><epage>3336</epage><pages>3325-3336</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>Among the fabrication of the nano-biometerials, the bioconvection of nanoparticles attained the utmost importance in this decade. Therefore, this theoretical continuation is performed to utilize the bioconvected flow of Williamson nanofluid caused by an oscillatory stretching surface. The flow is generated due to periodic motion of the sheet. The energy equation is modified by variable thermal conductivity. The significance of present flow problem increases by utilizing the thermophoresis and Brownian movement factors. The available formulated partial differential equations are promoted into non-dimensional structure via similarity variables. The analytical solution is fulfilled using convergent technique. The implications of promising parameters on velocity, temperature profile, nanoparticles volume fraction and microorganisms profile are evaluated graphically. Locally constituted physically expressions such as Nusselt number, Sherwood number and motile density number are treated numerically as well as graphically. The presence of variable thermal conductivity, thermophoresis and Brownian motion effects are more frequent for enhancement of heat transfer. The detected observation can involve the theoretical significance in various engineering processes, bio-fuel cells, solar energy system and enhancement of extrusion systems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-020-01282-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5509 |
ispartof | Applied nanoscience, 2020-08, Vol.10 (8), p.3325-3336 |
issn | 2190-5509 2190-5517 |
language | eng |
recordid | cdi_proquest_journals_2435207732 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biochemical fuel cells Brownian motion Chemistry and Materials Science Computational fluid dynamics Differential thermal analysis Exact solutions Extrusion Fluid flow Heat conductivity Heat transfer Materials Science Membrane Biology Microorganisms Motion effects Nanochemistry Nanofluids Nanoparticles Nanotechnology Nanotechnology and Microengineering Original Article Partial differential equations Solar energy Temperature profiles Thermal conductivity Thermal energy Thermophoresis |
title | Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioconvection%20flow%20of%20magnetized%20Williamson%20nanoliquid%20with%20motile%20organisms%20and%20variable%20thermal%20conductivity&rft.jtitle=Applied%20nanoscience&rft.au=Khan,%20Sami%20Ullah&rft.date=2020-08-01&rft.volume=10&rft.issue=8&rft.spage=3325&rft.epage=3336&rft.pages=3325-3336&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-020-01282-5&rft_dat=%3Cproquest_cross%3E2435207732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435207732&rft_id=info:pmid/&rfr_iscdi=true |