Generalized Fractional Ambiguity Function and Its Applications

The ambiguity function (AF) is an essential time-frequency analysis tool to analyze the radar waveform properties in radar applications. It can be used effectively and reliably to analyze properties like the peak-to-side-lobe ratio, time delay resolution, Doppler resolution and tolerance characteris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2020-10, Vol.39 (10), p.4980-5019
Hauptverfasser: Sahay, Peeyush, Shaik Rasheed, Izaz Ahamed, Kulkarni, Pranav, Jain, Shubham Anand, Anjarlekar, Ameya, Radhakrishna, P., Gadre, Vikram M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5019
container_issue 10
container_start_page 4980
container_title Circuits, systems, and signal processing
container_volume 39
creator Sahay, Peeyush
Shaik Rasheed, Izaz Ahamed
Kulkarni, Pranav
Jain, Shubham Anand
Anjarlekar, Ameya
Radhakrishna, P.
Gadre, Vikram M.
description The ambiguity function (AF) is an essential time-frequency analysis tool to analyze the radar waveform properties in radar applications. It can be used effectively and reliably to analyze properties like the peak-to-side-lobe ratio, time delay resolution, Doppler resolution and tolerance characteristic. However, it fails to analyze higher-order chirp waveforms and is unable to estimate their parameters. To solve this problem, a generalized time-frequency transform-based generalized fractional AF (GFAF) and generalized fractional Wigner–Ville distribution (GFWVD) are proposed. GFAF is also a generalization of the Fourier transform-based ambiguity function and the fractional Fourier transform-based ambiguity function. The uncertainty principle for GFAF and GFWVD is derived. Examples are presented to demonstrate the effectiveness of GFAF in analyzing cubic chirp waveforms and estimating parameters of multicomponent cubic chirps. The superiority of GFAF is demonstrated by comparing the mean square error to Cramer–Rao lower bound and high-order ambiguity function under different input-signal-to-noise ratio conditions. The robustness is demonstrated by comparing the signal-to-noise ratio gain to that of the time domain-matched filtering and other ambiguity functions. Finally, fourth-order parameters of a real bat echolocation signal are estimated.
doi_str_mv 10.1007/s00034-020-01398-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435009094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435009094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-caee1e32c6f6afb91116412e9069e5ff76c8bc5d2361a8403509d22dd02703433</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMoWFe_gKeC5-h7Sf8kF6Es7rqw4EXBW0jTdOnSbWvSHtZPb3YrePP0YPjNMG8IuUd4RID8yQMATygwoIBcCppfkAhTjjQVubgkEbBcUBD4eU1uvN8DoEwki8jz2nbW6bb5tlW8ctqMTd_pNi4OZbObmvEYr6buLMa6q-LN6ONiGNrG6JPmb8lVrVtv737vgnysXt6Xr3T7tt4siy01HOVIjbYWLWcmqzNdlxIRswSZlZBJm9Z1nhlRmrRiPEMtEuApyIqxqgq1w1-cL8jDnDu4_muyflT7fnKhqFcsCTRIkEmg2EwZ13vvbK0G1xy0OyoEddpJzTupsJM676TyYOKzyQe421n3F_2P6wfWFmnn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435009094</pqid></control><display><type>article</type><title>Generalized Fractional Ambiguity Function and Its Applications</title><source>SpringerNature Journals</source><creator>Sahay, Peeyush ; Shaik Rasheed, Izaz Ahamed ; Kulkarni, Pranav ; Jain, Shubham Anand ; Anjarlekar, Ameya ; Radhakrishna, P. ; Gadre, Vikram M.</creator><creatorcontrib>Sahay, Peeyush ; Shaik Rasheed, Izaz Ahamed ; Kulkarni, Pranav ; Jain, Shubham Anand ; Anjarlekar, Ameya ; Radhakrishna, P. ; Gadre, Vikram M.</creatorcontrib><description>The ambiguity function (AF) is an essential time-frequency analysis tool to analyze the radar waveform properties in radar applications. It can be used effectively and reliably to analyze properties like the peak-to-side-lobe ratio, time delay resolution, Doppler resolution and tolerance characteristic. However, it fails to analyze higher-order chirp waveforms and is unable to estimate their parameters. To solve this problem, a generalized time-frequency transform-based generalized fractional AF (GFAF) and generalized fractional Wigner–Ville distribution (GFWVD) are proposed. GFAF is also a generalization of the Fourier transform-based ambiguity function and the fractional Fourier transform-based ambiguity function. The uncertainty principle for GFAF and GFWVD is derived. Examples are presented to demonstrate the effectiveness of GFAF in analyzing cubic chirp waveforms and estimating parameters of multicomponent cubic chirps. The superiority of GFAF is demonstrated by comparing the mean square error to Cramer–Rao lower bound and high-order ambiguity function under different input-signal-to-noise ratio conditions. The robustness is demonstrated by comparing the signal-to-noise ratio gain to that of the time domain-matched filtering and other ambiguity functions. Finally, fourth-order parameters of a real bat echolocation signal are estimated.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-020-01398-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ambiguity ; Audio frequencies ; Chirp ; Circuits and Systems ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Fourier transforms ; Instrumentation ; Lower bounds ; Order parameters ; Parameter estimation ; Signal to noise ratio ; Signal,Image and Speech Processing ; Time lag ; Time-frequency analysis ; Waveforms</subject><ispartof>Circuits, systems, and signal processing, 2020-10, Vol.39 (10), p.4980-5019</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-caee1e32c6f6afb91116412e9069e5ff76c8bc5d2361a8403509d22dd02703433</citedby><cites>FETCH-LOGICAL-c319t-caee1e32c6f6afb91116412e9069e5ff76c8bc5d2361a8403509d22dd02703433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-020-01398-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-020-01398-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sahay, Peeyush</creatorcontrib><creatorcontrib>Shaik Rasheed, Izaz Ahamed</creatorcontrib><creatorcontrib>Kulkarni, Pranav</creatorcontrib><creatorcontrib>Jain, Shubham Anand</creatorcontrib><creatorcontrib>Anjarlekar, Ameya</creatorcontrib><creatorcontrib>Radhakrishna, P.</creatorcontrib><creatorcontrib>Gadre, Vikram M.</creatorcontrib><title>Generalized Fractional Ambiguity Function and Its Applications</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>The ambiguity function (AF) is an essential time-frequency analysis tool to analyze the radar waveform properties in radar applications. It can be used effectively and reliably to analyze properties like the peak-to-side-lobe ratio, time delay resolution, Doppler resolution and tolerance characteristic. However, it fails to analyze higher-order chirp waveforms and is unable to estimate their parameters. To solve this problem, a generalized time-frequency transform-based generalized fractional AF (GFAF) and generalized fractional Wigner–Ville distribution (GFWVD) are proposed. GFAF is also a generalization of the Fourier transform-based ambiguity function and the fractional Fourier transform-based ambiguity function. The uncertainty principle for GFAF and GFWVD is derived. Examples are presented to demonstrate the effectiveness of GFAF in analyzing cubic chirp waveforms and estimating parameters of multicomponent cubic chirps. The superiority of GFAF is demonstrated by comparing the mean square error to Cramer–Rao lower bound and high-order ambiguity function under different input-signal-to-noise ratio conditions. The robustness is demonstrated by comparing the signal-to-noise ratio gain to that of the time domain-matched filtering and other ambiguity functions. Finally, fourth-order parameters of a real bat echolocation signal are estimated.</description><subject>Ambiguity</subject><subject>Audio frequencies</subject><subject>Chirp</subject><subject>Circuits and Systems</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Instrumentation</subject><subject>Lower bounds</subject><subject>Order parameters</subject><subject>Parameter estimation</subject><subject>Signal to noise ratio</subject><subject>Signal,Image and Speech Processing</subject><subject>Time lag</subject><subject>Time-frequency analysis</subject><subject>Waveforms</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAUxIMoWFe_gKeC5-h7Sf8kF6Es7rqw4EXBW0jTdOnSbWvSHtZPb3YrePP0YPjNMG8IuUd4RID8yQMATygwoIBcCppfkAhTjjQVubgkEbBcUBD4eU1uvN8DoEwki8jz2nbW6bb5tlW8ctqMTd_pNi4OZbObmvEYr6buLMa6q-LN6ONiGNrG6JPmb8lVrVtv737vgnysXt6Xr3T7tt4siy01HOVIjbYWLWcmqzNdlxIRswSZlZBJm9Z1nhlRmrRiPEMtEuApyIqxqgq1w1-cL8jDnDu4_muyflT7fnKhqFcsCTRIkEmg2EwZ13vvbK0G1xy0OyoEddpJzTupsJM676TyYOKzyQe421n3F_2P6wfWFmnn</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Sahay, Peeyush</creator><creator>Shaik Rasheed, Izaz Ahamed</creator><creator>Kulkarni, Pranav</creator><creator>Jain, Shubham Anand</creator><creator>Anjarlekar, Ameya</creator><creator>Radhakrishna, P.</creator><creator>Gadre, Vikram M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20201001</creationdate><title>Generalized Fractional Ambiguity Function and Its Applications</title><author>Sahay, Peeyush ; Shaik Rasheed, Izaz Ahamed ; Kulkarni, Pranav ; Jain, Shubham Anand ; Anjarlekar, Ameya ; Radhakrishna, P. ; Gadre, Vikram M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-caee1e32c6f6afb91116412e9069e5ff76c8bc5d2361a8403509d22dd02703433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ambiguity</topic><topic>Audio frequencies</topic><topic>Chirp</topic><topic>Circuits and Systems</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Instrumentation</topic><topic>Lower bounds</topic><topic>Order parameters</topic><topic>Parameter estimation</topic><topic>Signal to noise ratio</topic><topic>Signal,Image and Speech Processing</topic><topic>Time lag</topic><topic>Time-frequency analysis</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahay, Peeyush</creatorcontrib><creatorcontrib>Shaik Rasheed, Izaz Ahamed</creatorcontrib><creatorcontrib>Kulkarni, Pranav</creatorcontrib><creatorcontrib>Jain, Shubham Anand</creatorcontrib><creatorcontrib>Anjarlekar, Ameya</creatorcontrib><creatorcontrib>Radhakrishna, P.</creatorcontrib><creatorcontrib>Gadre, Vikram M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahay, Peeyush</au><au>Shaik Rasheed, Izaz Ahamed</au><au>Kulkarni, Pranav</au><au>Jain, Shubham Anand</au><au>Anjarlekar, Ameya</au><au>Radhakrishna, P.</au><au>Gadre, Vikram M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Fractional Ambiguity Function and Its Applications</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>39</volume><issue>10</issue><spage>4980</spage><epage>5019</epage><pages>4980-5019</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>The ambiguity function (AF) is an essential time-frequency analysis tool to analyze the radar waveform properties in radar applications. It can be used effectively and reliably to analyze properties like the peak-to-side-lobe ratio, time delay resolution, Doppler resolution and tolerance characteristic. However, it fails to analyze higher-order chirp waveforms and is unable to estimate their parameters. To solve this problem, a generalized time-frequency transform-based generalized fractional AF (GFAF) and generalized fractional Wigner–Ville distribution (GFWVD) are proposed. GFAF is also a generalization of the Fourier transform-based ambiguity function and the fractional Fourier transform-based ambiguity function. The uncertainty principle for GFAF and GFWVD is derived. Examples are presented to demonstrate the effectiveness of GFAF in analyzing cubic chirp waveforms and estimating parameters of multicomponent cubic chirps. The superiority of GFAF is demonstrated by comparing the mean square error to Cramer–Rao lower bound and high-order ambiguity function under different input-signal-to-noise ratio conditions. The robustness is demonstrated by comparing the signal-to-noise ratio gain to that of the time domain-matched filtering and other ambiguity functions. Finally, fourth-order parameters of a real bat echolocation signal are estimated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-020-01398-7</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2020-10, Vol.39 (10), p.4980-5019
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_2435009094
source SpringerNature Journals
subjects Ambiguity
Audio frequencies
Chirp
Circuits and Systems
Electrical Engineering
Electronics and Microelectronics
Engineering
Fourier transforms
Instrumentation
Lower bounds
Order parameters
Parameter estimation
Signal to noise ratio
Signal,Image and Speech Processing
Time lag
Time-frequency analysis
Waveforms
title Generalized Fractional Ambiguity Function and Its Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Fractional%20Ambiguity%20Function%20and%20Its%20Applications&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Sahay,%20Peeyush&rft.date=2020-10-01&rft.volume=39&rft.issue=10&rft.spage=4980&rft.epage=5019&rft.pages=4980-5019&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-020-01398-7&rft_dat=%3Cproquest_cross%3E2435009094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435009094&rft_id=info:pmid/&rfr_iscdi=true