Mahalanobis Based Point to Distribution Metric for Point Cloud Geometry Quality Evaluation

Nowadays, point clouds (PCs) are a promising representation format for immersive content and target several emerging applications, notably in virtual and augmented reality. However, efficient coding solutions are critically needed due to the large amount of PC data required for high quality user exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2020, Vol.27, p.1350-1354
Hauptverfasser: Javaheri, Alireza, Brites, Catarina, Pereira, Fernando, Ascenso, Joao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1354
container_issue
container_start_page 1350
container_title IEEE signal processing letters
container_volume 27
creator Javaheri, Alireza
Brites, Catarina
Pereira, Fernando
Ascenso, Joao
description Nowadays, point clouds (PCs) are a promising representation format for immersive content and target several emerging applications, notably in virtual and augmented reality. However, efficient coding solutions are critically needed due to the large amount of PC data required for high quality user experiences. To address these needs, several PC coding standards were developed and thus, objective PC quality metrics able to accurately account for the subjective impact of coding artifacts are needed. In this paper, a scale-invariant PC geometry quality assessment metric is proposed based on a new type of correspondence, namely between a point and a distribution of points. This metric is able to reliably measure the geometry quality for PCs with different intrinsic characteristics and degraded by several coding solutions. Experimental results show the superiority of the proposed PC quality metric over relevant state-of-the-art.
doi_str_mv 10.1109/LSP.2020.3010128
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2434956219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9143408</ieee_id><sourcerecordid>2434956219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-37c9d08c7eb6acc03cb19248d58b1b3611c9bf7e01b6f14deecbc406b2c2f5bc3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89aZ7Fdy1Fqr0GJFvXgJSTaLW7abmuwK_e9NafE0D-b33gyPkGuECSKIu8X7asKAwSQFBGT8hIwwz3nC0gJPo4YSEiGAn5OLENYAwJHnI_K1VN-qVZ3TTaAPKtiKrlzT9bR39LEJvW_00Deuo0sbtaG180dg2rqhonPrNnGzo2-Dapt-R2e_qh3U3nJJzmrVBnt1nGPy-TT7mD4ni9f5y_R-kRgmsE_S0ogKuCmtLpQxkBqNgmW8yrlGHb9HI3RdWkBd1JhV1hptMig0M6zOtUnH5PaQu_XuZ7Chl2s3-C6elCxLM5EXDEWk4EAZ70LwtpZb32yU30kEuW9QxgblvkF5bDBabg6Wxlr7jwuMocDTP7M9bX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434956219</pqid></control><display><type>article</type><title>Mahalanobis Based Point to Distribution Metric for Point Cloud Geometry Quality Evaluation</title><source>IEEE Electronic Library (IEL)</source><creator>Javaheri, Alireza ; Brites, Catarina ; Pereira, Fernando ; Ascenso, Joao</creator><creatorcontrib>Javaheri, Alireza ; Brites, Catarina ; Pereira, Fernando ; Ascenso, Joao</creatorcontrib><description>Nowadays, point clouds (PCs) are a promising representation format for immersive content and target several emerging applications, notably in virtual and augmented reality. However, efficient coding solutions are critically needed due to the large amount of PC data required for high quality user experiences. To address these needs, several PC coding standards were developed and thus, objective PC quality metrics able to accurately account for the subjective impact of coding artifacts are needed. In this paper, a scale-invariant PC geometry quality assessment metric is proposed based on a new type of correspondence, namely between a point and a distribution of points. This metric is able to reliably measure the geometry quality for PCs with different intrinsic characteristics and degraded by several coding solutions. Experimental results show the superiority of the proposed PC quality metric over relevant state-of-the-art.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2020.3010128</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> Mahalanobis</tex-math> </inline-formula> </named-content> distance ; Augmented reality ; Coding ; Coding standards ; Correlation ; Covariance matrices ; Encoding ; Euclidean distance ; Geometry ; Point cloud ; point to distribution ; Quality ; Quality assessment ; Three-dimensional displays ; Virtual reality]]></subject><ispartof>IEEE signal processing letters, 2020, Vol.27, p.1350-1354</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-37c9d08c7eb6acc03cb19248d58b1b3611c9bf7e01b6f14deecbc406b2c2f5bc3</citedby><cites>FETCH-LOGICAL-c291t-37c9d08c7eb6acc03cb19248d58b1b3611c9bf7e01b6f14deecbc406b2c2f5bc3</cites><orcidid>0000-0001-6100-947X ; 0000-0001-9902-5926 ; 0000-0002-6011-4574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9143408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9143408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Javaheri, Alireza</creatorcontrib><creatorcontrib>Brites, Catarina</creatorcontrib><creatorcontrib>Pereira, Fernando</creatorcontrib><creatorcontrib>Ascenso, Joao</creatorcontrib><title>Mahalanobis Based Point to Distribution Metric for Point Cloud Geometry Quality Evaluation</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Nowadays, point clouds (PCs) are a promising representation format for immersive content and target several emerging applications, notably in virtual and augmented reality. However, efficient coding solutions are critically needed due to the large amount of PC data required for high quality user experiences. To address these needs, several PC coding standards were developed and thus, objective PC quality metrics able to accurately account for the subjective impact of coding artifacts are needed. In this paper, a scale-invariant PC geometry quality assessment metric is proposed based on a new type of correspondence, namely between a point and a distribution of points. This metric is able to reliably measure the geometry quality for PCs with different intrinsic characteristics and degraded by several coding solutions. Experimental results show the superiority of the proposed PC quality metric over relevant state-of-the-art.</description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> Mahalanobis</tex-math> </inline-formula> </named-content> distance]]></subject><subject>Augmented reality</subject><subject>Coding</subject><subject>Coding standards</subject><subject>Correlation</subject><subject>Covariance matrices</subject><subject>Encoding</subject><subject>Euclidean distance</subject><subject>Geometry</subject><subject>Point cloud</subject><subject>point to distribution</subject><subject>Quality</subject><subject>Quality assessment</subject><subject>Three-dimensional displays</subject><subject>Virtual reality</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89aZ7Fdy1Fqr0GJFvXgJSTaLW7abmuwK_e9NafE0D-b33gyPkGuECSKIu8X7asKAwSQFBGT8hIwwz3nC0gJPo4YSEiGAn5OLENYAwJHnI_K1VN-qVZ3TTaAPKtiKrlzT9bR39LEJvW_00Deuo0sbtaG180dg2rqhonPrNnGzo2-Dapt-R2e_qh3U3nJJzmrVBnt1nGPy-TT7mD4ni9f5y_R-kRgmsE_S0ogKuCmtLpQxkBqNgmW8yrlGHb9HI3RdWkBd1JhV1hptMig0M6zOtUnH5PaQu_XuZ7Chl2s3-C6elCxLM5EXDEWk4EAZ70LwtpZb32yU30kEuW9QxgblvkF5bDBabg6Wxlr7jwuMocDTP7M9bX4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Javaheri, Alireza</creator><creator>Brites, Catarina</creator><creator>Pereira, Fernando</creator><creator>Ascenso, Joao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6100-947X</orcidid><orcidid>https://orcid.org/0000-0001-9902-5926</orcidid><orcidid>https://orcid.org/0000-0002-6011-4574</orcidid></search><sort><creationdate>2020</creationdate><title>Mahalanobis Based Point to Distribution Metric for Point Cloud Geometry Quality Evaluation</title><author>Javaheri, Alireza ; Brites, Catarina ; Pereira, Fernando ; Ascenso, Joao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-37c9d08c7eb6acc03cb19248d58b1b3611c9bf7e01b6f14deecbc406b2c2f5bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> Mahalanobis</tex-math> </inline-formula> </named-content> distance]]></topic><topic>Augmented reality</topic><topic>Coding</topic><topic>Coding standards</topic><topic>Correlation</topic><topic>Covariance matrices</topic><topic>Encoding</topic><topic>Euclidean distance</topic><topic>Geometry</topic><topic>Point cloud</topic><topic>point to distribution</topic><topic>Quality</topic><topic>Quality assessment</topic><topic>Three-dimensional displays</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javaheri, Alireza</creatorcontrib><creatorcontrib>Brites, Catarina</creatorcontrib><creatorcontrib>Pereira, Fernando</creatorcontrib><creatorcontrib>Ascenso, Joao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Javaheri, Alireza</au><au>Brites, Catarina</au><au>Pereira, Fernando</au><au>Ascenso, Joao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mahalanobis Based Point to Distribution Metric for Point Cloud Geometry Quality Evaluation</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2020</date><risdate>2020</risdate><volume>27</volume><spage>1350</spage><epage>1354</epage><pages>1350-1354</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Nowadays, point clouds (PCs) are a promising representation format for immersive content and target several emerging applications, notably in virtual and augmented reality. However, efficient coding solutions are critically needed due to the large amount of PC data required for high quality user experiences. To address these needs, several PC coding standards were developed and thus, objective PC quality metrics able to accurately account for the subjective impact of coding artifacts are needed. In this paper, a scale-invariant PC geometry quality assessment metric is proposed based on a new type of correspondence, namely between a point and a distribution of points. This metric is able to reliably measure the geometry quality for PCs with different intrinsic characteristics and degraded by several coding solutions. Experimental results show the superiority of the proposed PC quality metric over relevant state-of-the-art.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2020.3010128</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6100-947X</orcidid><orcidid>https://orcid.org/0000-0001-9902-5926</orcidid><orcidid>https://orcid.org/0000-0002-6011-4574</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2020, Vol.27, p.1350-1354
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_2434956219
source IEEE Electronic Library (IEL)
subjects <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> Mahalanobis</tex-math> </inline-formula> </named-content> distance
Augmented reality
Coding
Coding standards
Correlation
Covariance matrices
Encoding
Euclidean distance
Geometry
Point cloud
point to distribution
Quality
Quality assessment
Three-dimensional displays
Virtual reality
title Mahalanobis Based Point to Distribution Metric for Point Cloud Geometry Quality Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mahalanobis%20Based%20Point%20to%20Distribution%20Metric%20for%20Point%20Cloud%20Geometry%20Quality%20Evaluation&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Javaheri,%20Alireza&rft.date=2020&rft.volume=27&rft.spage=1350&rft.epage=1354&rft.pages=1350-1354&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2020.3010128&rft_dat=%3Cproquest_RIE%3E2434956219%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434956219&rft_id=info:pmid/&rft_ieee_id=9143408&rfr_iscdi=true