Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging

In this paper, we cover the fundamentals of neural networks and Bayesian learning with a focus on signal and power integrity problems arising in packaging. Rather than only focus on mathematical formulations, we explain the important concepts and the intuition behind them, thereby demystifying the u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2020-08, Vol.10 (8), p.1-1
Hauptverfasser: Swaminathan, Madhavan, Torun, Hakki Mert, Yu, Huan, Hejase, Jose Ale, Becker, Wiren Dale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 8
container_start_page 1
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 10
creator Swaminathan, Madhavan
Torun, Hakki Mert
Yu, Huan
Hejase, Jose Ale
Becker, Wiren Dale
description In this paper, we cover the fundamentals of neural networks and Bayesian learning with a focus on signal and power integrity problems arising in packaging. Rather than only focus on mathematical formulations, we explain the important concepts and the intuition behind them, thereby demystifying the use of machine learning for these problems. We also share some of the recent developments in this area along with future research directions in the context of packaging. Links to open source downloadable software for some of the methods discussed are also provided.
doi_str_mv 10.1109/TCPMT.2020.3011910
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2434950017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149655</ieee_id><sourcerecordid>2434950017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f833c0348b5cf53e320de1de1931447f983f0f313abcc35a222ba2e031ebcf153</originalsourceid><addsrcrecordid>eNo9kG9LAzEMxg9RcMx9AX1T8PVm2ly360uZ_wYbHjpfl16Xnp3b3WxvyH17b04WAgnheULyS5JrDiPOQd0tp_liORIgYITAueJwlvQEl-Mhqkyen3oJl8kgxjV0ITOYAPaStwfatrHxrvVVyRbGfvqK2JxMqA4DVwf27svKbJipViyvfyiwWdVQGXzTsjzUxYa2kfmK5cZ-mbIzXSUXzmwiDf5rP_l4elxOX4bz1-fZ9H4-tIiqGboM0QKmWSGtk0goYEW8S4U8TSdOZejAIUdTWIvSCCEKIwiQU2Edl9hPbo97d6H-3lNs9Lreh-7UqEWKafcu8EmnEkeVDXWMgZzeBb81odUc9AGf_sOnD_j0P77OdHM0eSI6GRRP1VhK_AWhxGss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434950017</pqid></control><display><type>article</type><title>Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging</title><source>IEEE Electronic Library (IEL)</source><creator>Swaminathan, Madhavan ; Torun, Hakki Mert ; Yu, Huan ; Hejase, Jose Ale ; Becker, Wiren Dale</creator><creatorcontrib>Swaminathan, Madhavan ; Torun, Hakki Mert ; Yu, Huan ; Hejase, Jose Ale ; Becker, Wiren Dale</creatorcontrib><description>In this paper, we cover the fundamentals of neural networks and Bayesian learning with a focus on signal and power integrity problems arising in packaging. Rather than only focus on mathematical formulations, we explain the important concepts and the intuition behind them, thereby demystifying the use of machine learning for these problems. We also share some of the recent developments in this area along with future research directions in the context of packaging. Links to open source downloadable software for some of the methods discussed are also provided.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2020.3011910</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Bayesian Learning ; behavioral modeling ; Computational modeling ; design optimization ; Integrity ; Machine learning ; Neural Networks ; Neurons ; Optimization ; Packaging ; signal and power integrity ; Source code ; surrogate modeling ; Training</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2020-08, Vol.10 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f833c0348b5cf53e320de1de1931447f983f0f313abcc35a222ba2e031ebcf153</citedby><cites>FETCH-LOGICAL-c339t-f833c0348b5cf53e320de1de1931447f983f0f313abcc35a222ba2e031ebcf153</cites><orcidid>0000-0002-9611-1658 ; 0000-0003-2231-4804 ; 0000-0003-2266-3123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9149655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Swaminathan, Madhavan</creatorcontrib><creatorcontrib>Torun, Hakki Mert</creatorcontrib><creatorcontrib>Yu, Huan</creatorcontrib><creatorcontrib>Hejase, Jose Ale</creatorcontrib><creatorcontrib>Becker, Wiren Dale</creatorcontrib><title>Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>In this paper, we cover the fundamentals of neural networks and Bayesian learning with a focus on signal and power integrity problems arising in packaging. Rather than only focus on mathematical formulations, we explain the important concepts and the intuition behind them, thereby demystifying the use of machine learning for these problems. We also share some of the recent developments in this area along with future research directions in the context of packaging. Links to open source downloadable software for some of the methods discussed are also provided.</description><subject>Artificial neural networks</subject><subject>Bayesian Learning</subject><subject>behavioral modeling</subject><subject>Computational modeling</subject><subject>design optimization</subject><subject>Integrity</subject><subject>Machine learning</subject><subject>Neural Networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Packaging</subject><subject>signal and power integrity</subject><subject>Source code</subject><subject>surrogate modeling</subject><subject>Training</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kG9LAzEMxg9RcMx9AX1T8PVm2ly360uZ_wYbHjpfl16Xnp3b3WxvyH17b04WAgnheULyS5JrDiPOQd0tp_liORIgYITAueJwlvQEl-Mhqkyen3oJl8kgxjV0ITOYAPaStwfatrHxrvVVyRbGfvqK2JxMqA4DVwf27svKbJipViyvfyiwWdVQGXzTsjzUxYa2kfmK5cZ-mbIzXSUXzmwiDf5rP_l4elxOX4bz1-fZ9H4-tIiqGboM0QKmWSGtk0goYEW8S4U8TSdOZejAIUdTWIvSCCEKIwiQU2Edl9hPbo97d6H-3lNs9Lreh-7UqEWKafcu8EmnEkeVDXWMgZzeBb81odUc9AGf_sOnD_j0P77OdHM0eSI6GRRP1VhK_AWhxGss</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Swaminathan, Madhavan</creator><creator>Torun, Hakki Mert</creator><creator>Yu, Huan</creator><creator>Hejase, Jose Ale</creator><creator>Becker, Wiren Dale</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9611-1658</orcidid><orcidid>https://orcid.org/0000-0003-2231-4804</orcidid><orcidid>https://orcid.org/0000-0003-2266-3123</orcidid></search><sort><creationdate>20200801</creationdate><title>Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging</title><author>Swaminathan, Madhavan ; Torun, Hakki Mert ; Yu, Huan ; Hejase, Jose Ale ; Becker, Wiren Dale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f833c0348b5cf53e320de1de1931447f983f0f313abcc35a222ba2e031ebcf153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Bayesian Learning</topic><topic>behavioral modeling</topic><topic>Computational modeling</topic><topic>design optimization</topic><topic>Integrity</topic><topic>Machine learning</topic><topic>Neural Networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Packaging</topic><topic>signal and power integrity</topic><topic>Source code</topic><topic>surrogate modeling</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swaminathan, Madhavan</creatorcontrib><creatorcontrib>Torun, Hakki Mert</creatorcontrib><creatorcontrib>Yu, Huan</creatorcontrib><creatorcontrib>Hejase, Jose Ale</creatorcontrib><creatorcontrib>Becker, Wiren Dale</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Swaminathan, Madhavan</au><au>Torun, Hakki Mert</au><au>Yu, Huan</au><au>Hejase, Jose Ale</au><au>Becker, Wiren Dale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>In this paper, we cover the fundamentals of neural networks and Bayesian learning with a focus on signal and power integrity problems arising in packaging. Rather than only focus on mathematical formulations, we explain the important concepts and the intuition behind them, thereby demystifying the use of machine learning for these problems. We also share some of the recent developments in this area along with future research directions in the context of packaging. Links to open source downloadable software for some of the methods discussed are also provided.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2020.3011910</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9611-1658</orcidid><orcidid>https://orcid.org/0000-0003-2231-4804</orcidid><orcidid>https://orcid.org/0000-0003-2266-3123</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2020-08, Vol.10 (8), p.1-1
issn 2156-3950
2156-3985
language eng
recordid cdi_proquest_journals_2434950017
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Bayesian Learning
behavioral modeling
Computational modeling
design optimization
Integrity
Machine learning
Neural Networks
Neurons
Optimization
Packaging
signal and power integrity
Source code
surrogate modeling
Training
title Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demystifying%20Machine%20Learning%20for%20Signal%20and%20Power%20Integrity%20Problems%20in%20Packaging&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Swaminathan,%20Madhavan&rft.date=2020-08-01&rft.volume=10&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2020.3011910&rft_dat=%3Cproquest_RIE%3E2434950017%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434950017&rft_id=info:pmid/&rft_ieee_id=9149655&rfr_iscdi=true