Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging
In this paper, we cover the fundamentals of neural networks and Bayesian learning with a focus on signal and power integrity problems arising in packaging. Rather than only focus on mathematical formulations, we explain the important concepts and the intuition behind them, thereby demystifying the u...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2020-08, Vol.10 (8), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 10 |
creator | Swaminathan, Madhavan Torun, Hakki Mert Yu, Huan Hejase, Jose Ale Becker, Wiren Dale |
description | In this paper, we cover the fundamentals of neural networks and Bayesian learning with a focus on signal and power integrity problems arising in packaging. Rather than only focus on mathematical formulations, we explain the important concepts and the intuition behind them, thereby demystifying the use of machine learning for these problems. We also share some of the recent developments in this area along with future research directions in the context of packaging. Links to open source downloadable software for some of the methods discussed are also provided. |
doi_str_mv | 10.1109/TCPMT.2020.3011910 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2434950017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149655</ieee_id><sourcerecordid>2434950017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f833c0348b5cf53e320de1de1931447f983f0f313abcc35a222ba2e031ebcf153</originalsourceid><addsrcrecordid>eNo9kG9LAzEMxg9RcMx9AX1T8PVm2ly360uZ_wYbHjpfl16Xnp3b3WxvyH17b04WAgnheULyS5JrDiPOQd0tp_liORIgYITAueJwlvQEl-Mhqkyen3oJl8kgxjV0ITOYAPaStwfatrHxrvVVyRbGfvqK2JxMqA4DVwf27svKbJipViyvfyiwWdVQGXzTsjzUxYa2kfmK5cZ-mbIzXSUXzmwiDf5rP_l4elxOX4bz1-fZ9H4-tIiqGboM0QKmWSGtk0goYEW8S4U8TSdOZejAIUdTWIvSCCEKIwiQU2Edl9hPbo97d6H-3lNs9Lreh-7UqEWKafcu8EmnEkeVDXWMgZzeBb81odUc9AGf_sOnD_j0P77OdHM0eSI6GRRP1VhK_AWhxGss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434950017</pqid></control><display><type>article</type><title>Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging</title><source>IEEE Electronic Library (IEL)</source><creator>Swaminathan, Madhavan ; Torun, Hakki Mert ; Yu, Huan ; Hejase, Jose Ale ; Becker, Wiren Dale</creator><creatorcontrib>Swaminathan, Madhavan ; Torun, Hakki Mert ; Yu, Huan ; Hejase, Jose Ale ; Becker, Wiren Dale</creatorcontrib><description>In this paper, we cover the fundamentals of neural networks and Bayesian learning with a focus on signal and power integrity problems arising in packaging. Rather than only focus on mathematical formulations, we explain the important concepts and the intuition behind them, thereby demystifying the use of machine learning for these problems. We also share some of the recent developments in this area along with future research directions in the context of packaging. Links to open source downloadable software for some of the methods discussed are also provided.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2020.3011910</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Bayesian Learning ; behavioral modeling ; Computational modeling ; design optimization ; Integrity ; Machine learning ; Neural Networks ; Neurons ; Optimization ; Packaging ; signal and power integrity ; Source code ; surrogate modeling ; Training</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2020-08, Vol.10 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f833c0348b5cf53e320de1de1931447f983f0f313abcc35a222ba2e031ebcf153</citedby><cites>FETCH-LOGICAL-c339t-f833c0348b5cf53e320de1de1931447f983f0f313abcc35a222ba2e031ebcf153</cites><orcidid>0000-0002-9611-1658 ; 0000-0003-2231-4804 ; 0000-0003-2266-3123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9149655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Swaminathan, Madhavan</creatorcontrib><creatorcontrib>Torun, Hakki Mert</creatorcontrib><creatorcontrib>Yu, Huan</creatorcontrib><creatorcontrib>Hejase, Jose Ale</creatorcontrib><creatorcontrib>Becker, Wiren Dale</creatorcontrib><title>Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>In this paper, we cover the fundamentals of neural networks and Bayesian learning with a focus on signal and power integrity problems arising in packaging. Rather than only focus on mathematical formulations, we explain the important concepts and the intuition behind them, thereby demystifying the use of machine learning for these problems. We also share some of the recent developments in this area along with future research directions in the context of packaging. Links to open source downloadable software for some of the methods discussed are also provided.</description><subject>Artificial neural networks</subject><subject>Bayesian Learning</subject><subject>behavioral modeling</subject><subject>Computational modeling</subject><subject>design optimization</subject><subject>Integrity</subject><subject>Machine learning</subject><subject>Neural Networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Packaging</subject><subject>signal and power integrity</subject><subject>Source code</subject><subject>surrogate modeling</subject><subject>Training</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kG9LAzEMxg9RcMx9AX1T8PVm2ly360uZ_wYbHjpfl16Xnp3b3WxvyH17b04WAgnheULyS5JrDiPOQd0tp_liORIgYITAueJwlvQEl-Mhqkyen3oJl8kgxjV0ITOYAPaStwfatrHxrvVVyRbGfvqK2JxMqA4DVwf27svKbJipViyvfyiwWdVQGXzTsjzUxYa2kfmK5cZ-mbIzXSUXzmwiDf5rP_l4elxOX4bz1-fZ9H4-tIiqGboM0QKmWSGtk0goYEW8S4U8TSdOZejAIUdTWIvSCCEKIwiQU2Edl9hPbo97d6H-3lNs9Lreh-7UqEWKafcu8EmnEkeVDXWMgZzeBb81odUc9AGf_sOnD_j0P77OdHM0eSI6GRRP1VhK_AWhxGss</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Swaminathan, Madhavan</creator><creator>Torun, Hakki Mert</creator><creator>Yu, Huan</creator><creator>Hejase, Jose Ale</creator><creator>Becker, Wiren Dale</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9611-1658</orcidid><orcidid>https://orcid.org/0000-0003-2231-4804</orcidid><orcidid>https://orcid.org/0000-0003-2266-3123</orcidid></search><sort><creationdate>20200801</creationdate><title>Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging</title><author>Swaminathan, Madhavan ; Torun, Hakki Mert ; Yu, Huan ; Hejase, Jose Ale ; Becker, Wiren Dale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f833c0348b5cf53e320de1de1931447f983f0f313abcc35a222ba2e031ebcf153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Bayesian Learning</topic><topic>behavioral modeling</topic><topic>Computational modeling</topic><topic>design optimization</topic><topic>Integrity</topic><topic>Machine learning</topic><topic>Neural Networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Packaging</topic><topic>signal and power integrity</topic><topic>Source code</topic><topic>surrogate modeling</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swaminathan, Madhavan</creatorcontrib><creatorcontrib>Torun, Hakki Mert</creatorcontrib><creatorcontrib>Yu, Huan</creatorcontrib><creatorcontrib>Hejase, Jose Ale</creatorcontrib><creatorcontrib>Becker, Wiren Dale</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Swaminathan, Madhavan</au><au>Torun, Hakki Mert</au><au>Yu, Huan</au><au>Hejase, Jose Ale</au><au>Becker, Wiren Dale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>In this paper, we cover the fundamentals of neural networks and Bayesian learning with a focus on signal and power integrity problems arising in packaging. Rather than only focus on mathematical formulations, we explain the important concepts and the intuition behind them, thereby demystifying the use of machine learning for these problems. We also share some of the recent developments in this area along with future research directions in the context of packaging. Links to open source downloadable software for some of the methods discussed are also provided.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2020.3011910</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9611-1658</orcidid><orcidid>https://orcid.org/0000-0003-2231-4804</orcidid><orcidid>https://orcid.org/0000-0003-2266-3123</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2020-08, Vol.10 (8), p.1-1 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_proquest_journals_2434950017 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Bayesian Learning behavioral modeling Computational modeling design optimization Integrity Machine learning Neural Networks Neurons Optimization Packaging signal and power integrity Source code surrogate modeling Training |
title | Demystifying Machine Learning for Signal and Power Integrity Problems in Packaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demystifying%20Machine%20Learning%20for%20Signal%20and%20Power%20Integrity%20Problems%20in%20Packaging&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Swaminathan,%20Madhavan&rft.date=2020-08-01&rft.volume=10&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2020.3011910&rft_dat=%3Cproquest_RIE%3E2434950017%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434950017&rft_id=info:pmid/&rft_ieee_id=9149655&rfr_iscdi=true |