Real-Time Thermospheric Density Estimation from Satellite Position Measurements
In this paper, a new data-driven method is demonstrated for real-time neutral density estimation via model–data fusion in quasi-physical ionosphere–thermosphere models. The proposed method has two main components: 1) the use of a quasi-physical reduced-order model (ROM) to represent the dynamics of...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2020-09, Vol.43 (9), p.1656-1670 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1670 |
---|---|
container_issue | 9 |
container_start_page | 1656 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 43 |
creator | Mehta, Piyush M Linares, Richard |
description | In this paper, a new data-driven method is demonstrated for real-time neutral density estimation via model–data fusion in quasi-physical ionosphere–thermosphere models. The proposed method has two main components: 1) the use of a quasi-physical reduced-order model (ROM) to represent the dynamics of the upper atmosphere, and 2) the calibration of the ROM coefficients using satellite position measurements. The ROM is developed using dynamic mode decomposition with control. Previous work required direct density measurements (accelerometer-derived densities), and the current work extends this approach to satellite position measurements. This work is a new approach to dynamic calibration of the atmosphere. This work proposes combining the orbit determination process with the ROM coefficient calibration through the use of the square-root unscented Kalman filter (SQUKF). The proposed SQUKF allows for new potential data sources to be incorporated into the density calibration process. This is demonstrated with simulated Global Positioning System position measurements with 5 min resolution and 10 m Cartesian position error. The proposed method is demonstrated to be simple, robust, and accurate through simulation scenarios. The proposed method can provide real-time estimates of the state of the upper atmosphere while having inherent forecasting/predictive capabilities. |
doi_str_mv | 10.2514/1.G004793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434902692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434902692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-455688eed87e508c4f12f154e384b574ff0b395db58dd651f9d8e8692cd07b03</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFYX_oOAKxepd17JZCm1VqFS0eyHPO5gSpKJM5NF_31T2oUrV-dw-TiHewi5p7BgkoonulgDiDTjF2RGJecxV0pc_vHX5Mb7HQDlCU1nZPuFRRvnTYdR_oOus36YpKmiF-x9E_bRyoemK0Jj-8g420XfRcC2bQJGn3YCjvcPLPzosMM--FtyZYrW491Z5yR_XeXLt3izXb8vnzdxxRmEWEiZKIVYqxQlqEoYygyVArkSpUyFMVDyTNalVHWdSGqyWqFKMlbVkJbA5-ThFDs4-zuiD3pnR9dPjZoJLjJgE_s_xWTGFAM5UY8nqnLWe4dGD2562e01BX0cVVN9HpUfAB87aCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425928205</pqid></control><display><type>article</type><title>Real-Time Thermospheric Density Estimation from Satellite Position Measurements</title><source>Alma/SFX Local Collection</source><creator>Mehta, Piyush M ; Linares, Richard</creator><creatorcontrib>Mehta, Piyush M ; Linares, Richard</creatorcontrib><description>In this paper, a new data-driven method is demonstrated for real-time neutral density estimation via model–data fusion in quasi-physical ionosphere–thermosphere models. The proposed method has two main components: 1) the use of a quasi-physical reduced-order model (ROM) to represent the dynamics of the upper atmosphere, and 2) the calibration of the ROM coefficients using satellite position measurements. The ROM is developed using dynamic mode decomposition with control. Previous work required direct density measurements (accelerometer-derived densities), and the current work extends this approach to satellite position measurements. This work is a new approach to dynamic calibration of the atmosphere. This work proposes combining the orbit determination process with the ROM coefficient calibration through the use of the square-root unscented Kalman filter (SQUKF). The proposed SQUKF allows for new potential data sources to be incorporated into the density calibration process. This is demonstrated with simulated Global Positioning System position measurements with 5 min resolution and 10 m Cartesian position error. The proposed method is demonstrated to be simple, robust, and accurate through simulation scenarios. The proposed method can provide real-time estimates of the state of the upper atmosphere while having inherent forecasting/predictive capabilities.</description><identifier>ISSN: 1533-3884</identifier><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G004793</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Accelerometers ; Atmospheric models ; Calibration ; Cartesian coordinates ; Computer simulation ; Data integration ; Density ; Global positioning systems ; GPS ; Ionosphere ; Kalman filters ; Orbit determination ; Position errors ; Position measurement ; Real time ; Reduced order models ; Thermosphere ; Upper atmosphere</subject><ispartof>Journal of guidance, control, and dynamics, 2020-09, Vol.43 (9), p.1656-1670</ispartof><rights>Copyright © 2020 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-455688eed87e508c4f12f154e384b574ff0b395db58dd651f9d8e8692cd07b03</citedby><cites>FETCH-LOGICAL-c320t-455688eed87e508c4f12f154e384b574ff0b395db58dd651f9d8e8692cd07b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mehta, Piyush M</creatorcontrib><creatorcontrib>Linares, Richard</creatorcontrib><title>Real-Time Thermospheric Density Estimation from Satellite Position Measurements</title><title>Journal of guidance, control, and dynamics</title><description>In this paper, a new data-driven method is demonstrated for real-time neutral density estimation via model–data fusion in quasi-physical ionosphere–thermosphere models. The proposed method has two main components: 1) the use of a quasi-physical reduced-order model (ROM) to represent the dynamics of the upper atmosphere, and 2) the calibration of the ROM coefficients using satellite position measurements. The ROM is developed using dynamic mode decomposition with control. Previous work required direct density measurements (accelerometer-derived densities), and the current work extends this approach to satellite position measurements. This work is a new approach to dynamic calibration of the atmosphere. This work proposes combining the orbit determination process with the ROM coefficient calibration through the use of the square-root unscented Kalman filter (SQUKF). The proposed SQUKF allows for new potential data sources to be incorporated into the density calibration process. This is demonstrated with simulated Global Positioning System position measurements with 5 min resolution and 10 m Cartesian position error. The proposed method is demonstrated to be simple, robust, and accurate through simulation scenarios. The proposed method can provide real-time estimates of the state of the upper atmosphere while having inherent forecasting/predictive capabilities.</description><subject>Accelerometers</subject><subject>Atmospheric models</subject><subject>Calibration</subject><subject>Cartesian coordinates</subject><subject>Computer simulation</subject><subject>Data integration</subject><subject>Density</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Ionosphere</subject><subject>Kalman filters</subject><subject>Orbit determination</subject><subject>Position errors</subject><subject>Position measurement</subject><subject>Real time</subject><subject>Reduced order models</subject><subject>Thermosphere</subject><subject>Upper atmosphere</subject><issn>1533-3884</issn><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFYX_oOAKxepd17JZCm1VqFS0eyHPO5gSpKJM5NF_31T2oUrV-dw-TiHewi5p7BgkoonulgDiDTjF2RGJecxV0pc_vHX5Mb7HQDlCU1nZPuFRRvnTYdR_oOus36YpKmiF-x9E_bRyoemK0Jj-8g420XfRcC2bQJGn3YCjvcPLPzosMM--FtyZYrW491Z5yR_XeXLt3izXb8vnzdxxRmEWEiZKIVYqxQlqEoYygyVArkSpUyFMVDyTNalVHWdSGqyWqFKMlbVkJbA5-ThFDs4-zuiD3pnR9dPjZoJLjJgE_s_xWTGFAM5UY8nqnLWe4dGD2562e01BX0cVVN9HpUfAB87aCk</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Mehta, Piyush M</creator><creator>Linares, Richard</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200901</creationdate><title>Real-Time Thermospheric Density Estimation from Satellite Position Measurements</title><author>Mehta, Piyush M ; Linares, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-455688eed87e508c4f12f154e384b574ff0b395db58dd651f9d8e8692cd07b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerometers</topic><topic>Atmospheric models</topic><topic>Calibration</topic><topic>Cartesian coordinates</topic><topic>Computer simulation</topic><topic>Data integration</topic><topic>Density</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Ionosphere</topic><topic>Kalman filters</topic><topic>Orbit determination</topic><topic>Position errors</topic><topic>Position measurement</topic><topic>Real time</topic><topic>Reduced order models</topic><topic>Thermosphere</topic><topic>Upper atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Piyush M</creatorcontrib><creatorcontrib>Linares, Richard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehta, Piyush M</au><au>Linares, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Thermospheric Density Estimation from Satellite Position Measurements</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>43</volume><issue>9</issue><spage>1656</spage><epage>1670</epage><pages>1656-1670</pages><issn>1533-3884</issn><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>In this paper, a new data-driven method is demonstrated for real-time neutral density estimation via model–data fusion in quasi-physical ionosphere–thermosphere models. The proposed method has two main components: 1) the use of a quasi-physical reduced-order model (ROM) to represent the dynamics of the upper atmosphere, and 2) the calibration of the ROM coefficients using satellite position measurements. The ROM is developed using dynamic mode decomposition with control. Previous work required direct density measurements (accelerometer-derived densities), and the current work extends this approach to satellite position measurements. This work is a new approach to dynamic calibration of the atmosphere. This work proposes combining the orbit determination process with the ROM coefficient calibration through the use of the square-root unscented Kalman filter (SQUKF). The proposed SQUKF allows for new potential data sources to be incorporated into the density calibration process. This is demonstrated with simulated Global Positioning System position measurements with 5 min resolution and 10 m Cartesian position error. The proposed method is demonstrated to be simple, robust, and accurate through simulation scenarios. The proposed method can provide real-time estimates of the state of the upper atmosphere while having inherent forecasting/predictive capabilities.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G004793</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1533-3884 |
ispartof | Journal of guidance, control, and dynamics, 2020-09, Vol.43 (9), p.1656-1670 |
issn | 1533-3884 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_journals_2434902692 |
source | Alma/SFX Local Collection |
subjects | Accelerometers Atmospheric models Calibration Cartesian coordinates Computer simulation Data integration Density Global positioning systems GPS Ionosphere Kalman filters Orbit determination Position errors Position measurement Real time Reduced order models Thermosphere Upper atmosphere |
title | Real-Time Thermospheric Density Estimation from Satellite Position Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Thermospheric%20Density%20Estimation%20from%20Satellite%20Position%20Measurements&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Mehta,%20Piyush%20M&rft.date=2020-09-01&rft.volume=43&rft.issue=9&rft.spage=1656&rft.epage=1670&rft.pages=1656-1670&rft.issn=1533-3884&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G004793&rft_dat=%3Cproquest_cross%3E2434902692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425928205&rft_id=info:pmid/&rfr_iscdi=true |