Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization

The aluminum powder composites based on Al–Al2O3 were obtained by the advanced in–situ partial hydrothermal oxidation method. The opportunity to obtain the controlled amount of alumina on the particle’s surfaces was studied. The water vapor temperature fixed at 90 °C and 120 °C gave the possibility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-06, Vol.825, p.154024, Article 154024
Hauptverfasser: Nalivaiko, Anton Yu, Arnautov, Alexey N., Zmanovsky, Sergey V., Ozherelkov, Dmitriy Yu, Shurkin, Pavel K., Gromov, Alexander A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 154024
container_title Journal of alloys and compounds
container_volume 825
creator Nalivaiko, Anton Yu
Arnautov, Alexey N.
Zmanovsky, Sergey V.
Ozherelkov, Dmitriy Yu
Shurkin, Pavel K.
Gromov, Alexander A.
description The aluminum powder composites based on Al–Al2O3 were obtained by the advanced in–situ partial hydrothermal oxidation method. The opportunity to obtain the controlled amount of alumina on the particle’s surfaces was studied. The water vapor temperature fixed at 90 °C and 120 °C gave the possibility to obtain two composites with the amount of Al2O3 at 9.90 wt % (OAP–1) and 18.75 wt % (OAP–2). Their median diameters were 41–42 μm with normal particle size distribution. The comparison with atomized 7068 alloy (AP–7068) powder showed their better particle sphericity. The OAP–1 sintered sample has the highest hardness of 471 MPa that provided by the highest density of 97.1% and the finest grain structure. [Display omitted] •Hydrothermal oxidation method was used to produce aluminum-alumina composites.•A detailed description of the hydrothermal oxidation method for the production of Al–Al2O3 composites was proposed.•The particles after oxidation and the surface of the sintered objects were examined in detail.•Hardness (HV) of Al–Al2O3 composites and standart 7068 aluminum alloy was compared.
doi_str_mv 10.1016/j.jallcom.2020.154024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434858299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092583882030387X</els_id><sourcerecordid>2434858299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-d7b842b18017560bc8abf4fdfe39a609ead353a8dc446cac8461cdda9748fd73</originalsourceid><addsrcrecordid>eNqFkN9KwzAUh4MoOKePIAS87kyatE29kTH8B4N5sfuQJilLaZuaZOq88h18Q5_EbN29Vwd-nO93OB8A1xjNMML5bTNrRNtK281SlMYsoyilJ2CCWUESmuflKZigMs0SRhg7BxfeNwghXBI8Adt5-_v9M2_TFYGD_VDawVg0WG-C9tBWQZheK1jt4GannA0b7TrRQvtplAjG9rDTYWPVHXw9wB6KXkFv-qBdxLzohjb2yI1wQsbMfB2oS3BWi9brq-OcgvXjw3rxnCxXTy-L-TKRFJGQqKJiNK0wQ7jIclRJJqqa1qrWpBQ5KrVQJCOCKUlpLoVkNMdSKVEWlNWqIFNwM9YOzr5ttQ-8sVvXx4s8pYSyjKVlGbeycUs6673TNR-c6YTbcYz4XjBv-FEw3wvmo-DI3Y-cjh-8G-24l0b3UivjtAxcWfNPwx96AYp6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434858299</pqid></control><display><type>article</type><title>Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization</title><source>Elsevier ScienceDirect Journals</source><creator>Nalivaiko, Anton Yu ; Arnautov, Alexey N. ; Zmanovsky, Sergey V. ; Ozherelkov, Dmitriy Yu ; Shurkin, Pavel K. ; Gromov, Alexander A.</creator><creatorcontrib>Nalivaiko, Anton Yu ; Arnautov, Alexey N. ; Zmanovsky, Sergey V. ; Ozherelkov, Dmitriy Yu ; Shurkin, Pavel K. ; Gromov, Alexander A.</creatorcontrib><description>The aluminum powder composites based on Al–Al2O3 were obtained by the advanced in–situ partial hydrothermal oxidation method. The opportunity to obtain the controlled amount of alumina on the particle’s surfaces was studied. The water vapor temperature fixed at 90 °C and 120 °C gave the possibility to obtain two composites with the amount of Al2O3 at 9.90 wt % (OAP–1) and 18.75 wt % (OAP–2). Their median diameters were 41–42 μm with normal particle size distribution. The comparison with atomized 7068 alloy (AP–7068) powder showed their better particle sphericity. The OAP–1 sintered sample has the highest hardness of 471 MPa that provided by the highest density of 97.1% and the finest grain structure. [Display omitted] •Hydrothermal oxidation method was used to produce aluminum-alumina composites.•A detailed description of the hydrothermal oxidation method for the production of Al–Al2O3 composites was proposed.•The particles after oxidation and the surface of the sintered objects were examined in detail.•Hardness (HV) of Al–Al2O3 composites and standart 7068 aluminum alloy was compared.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.154024</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>7068 aluminum alloy ; Alumina ; Aluminum ; Aluminum oxide ; Atomizing ; Grain structure ; Hydrothermal oxidation ; Metal matrix composites ; Oxidation ; Particle size distribution ; Particulate composites ; Sintering ; Sintering (powder metallurgy) ; Water vapor</subject><ispartof>Journal of alloys and compounds, 2020-06, Vol.825, p.154024, Article 154024</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-d7b842b18017560bc8abf4fdfe39a609ead353a8dc446cac8461cdda9748fd73</citedby><cites>FETCH-LOGICAL-c403t-d7b842b18017560bc8abf4fdfe39a609ead353a8dc446cac8461cdda9748fd73</cites><orcidid>0000-0003-2475-4811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092583882030387X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Nalivaiko, Anton Yu</creatorcontrib><creatorcontrib>Arnautov, Alexey N.</creatorcontrib><creatorcontrib>Zmanovsky, Sergey V.</creatorcontrib><creatorcontrib>Ozherelkov, Dmitriy Yu</creatorcontrib><creatorcontrib>Shurkin, Pavel K.</creatorcontrib><creatorcontrib>Gromov, Alexander A.</creatorcontrib><title>Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization</title><title>Journal of alloys and compounds</title><description>The aluminum powder composites based on Al–Al2O3 were obtained by the advanced in–situ partial hydrothermal oxidation method. The opportunity to obtain the controlled amount of alumina on the particle’s surfaces was studied. The water vapor temperature fixed at 90 °C and 120 °C gave the possibility to obtain two composites with the amount of Al2O3 at 9.90 wt % (OAP–1) and 18.75 wt % (OAP–2). Their median diameters were 41–42 μm with normal particle size distribution. The comparison with atomized 7068 alloy (AP–7068) powder showed their better particle sphericity. The OAP–1 sintered sample has the highest hardness of 471 MPa that provided by the highest density of 97.1% and the finest grain structure. [Display omitted] •Hydrothermal oxidation method was used to produce aluminum-alumina composites.•A detailed description of the hydrothermal oxidation method for the production of Al–Al2O3 composites was proposed.•The particles after oxidation and the surface of the sintered objects were examined in detail.•Hardness (HV) of Al–Al2O3 composites and standart 7068 aluminum alloy was compared.</description><subject>7068 aluminum alloy</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Atomizing</subject><subject>Grain structure</subject><subject>Hydrothermal oxidation</subject><subject>Metal matrix composites</subject><subject>Oxidation</subject><subject>Particle size distribution</subject><subject>Particulate composites</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Water vapor</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkN9KwzAUh4MoOKePIAS87kyatE29kTH8B4N5sfuQJilLaZuaZOq88h18Q5_EbN29Vwd-nO93OB8A1xjNMML5bTNrRNtK281SlMYsoyilJ2CCWUESmuflKZigMs0SRhg7BxfeNwghXBI8Adt5-_v9M2_TFYGD_VDawVg0WG-C9tBWQZheK1jt4GannA0b7TrRQvtplAjG9rDTYWPVHXw9wB6KXkFv-qBdxLzohjb2yI1wQsbMfB2oS3BWi9brq-OcgvXjw3rxnCxXTy-L-TKRFJGQqKJiNK0wQ7jIclRJJqqa1qrWpBQ5KrVQJCOCKUlpLoVkNMdSKVEWlNWqIFNwM9YOzr5ttQ-8sVvXx4s8pYSyjKVlGbeycUs6673TNR-c6YTbcYz4XjBv-FEw3wvmo-DI3Y-cjh-8G-24l0b3UivjtAxcWfNPwx96AYp6</recordid><startdate>20200605</startdate><enddate>20200605</enddate><creator>Nalivaiko, Anton Yu</creator><creator>Arnautov, Alexey N.</creator><creator>Zmanovsky, Sergey V.</creator><creator>Ozherelkov, Dmitriy Yu</creator><creator>Shurkin, Pavel K.</creator><creator>Gromov, Alexander A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2475-4811</orcidid></search><sort><creationdate>20200605</creationdate><title>Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization</title><author>Nalivaiko, Anton Yu ; Arnautov, Alexey N. ; Zmanovsky, Sergey V. ; Ozherelkov, Dmitriy Yu ; Shurkin, Pavel K. ; Gromov, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-d7b842b18017560bc8abf4fdfe39a609ead353a8dc446cac8461cdda9748fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>7068 aluminum alloy</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Atomizing</topic><topic>Grain structure</topic><topic>Hydrothermal oxidation</topic><topic>Metal matrix composites</topic><topic>Oxidation</topic><topic>Particle size distribution</topic><topic>Particulate composites</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nalivaiko, Anton Yu</creatorcontrib><creatorcontrib>Arnautov, Alexey N.</creatorcontrib><creatorcontrib>Zmanovsky, Sergey V.</creatorcontrib><creatorcontrib>Ozherelkov, Dmitriy Yu</creatorcontrib><creatorcontrib>Shurkin, Pavel K.</creatorcontrib><creatorcontrib>Gromov, Alexander A.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nalivaiko, Anton Yu</au><au>Arnautov, Alexey N.</au><au>Zmanovsky, Sergey V.</au><au>Ozherelkov, Dmitriy Yu</au><au>Shurkin, Pavel K.</au><au>Gromov, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-06-05</date><risdate>2020</risdate><volume>825</volume><spage>154024</spage><pages>154024-</pages><artnum>154024</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The aluminum powder composites based on Al–Al2O3 were obtained by the advanced in–situ partial hydrothermal oxidation method. The opportunity to obtain the controlled amount of alumina on the particle’s surfaces was studied. The water vapor temperature fixed at 90 °C and 120 °C gave the possibility to obtain two composites with the amount of Al2O3 at 9.90 wt % (OAP–1) and 18.75 wt % (OAP–2). Their median diameters were 41–42 μm with normal particle size distribution. The comparison with atomized 7068 alloy (AP–7068) powder showed their better particle sphericity. The OAP–1 sintered sample has the highest hardness of 471 MPa that provided by the highest density of 97.1% and the finest grain structure. [Display omitted] •Hydrothermal oxidation method was used to produce aluminum-alumina composites.•A detailed description of the hydrothermal oxidation method for the production of Al–Al2O3 composites was proposed.•The particles after oxidation and the surface of the sintered objects were examined in detail.•Hardness (HV) of Al–Al2O3 composites and standart 7068 aluminum alloy was compared.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.154024</doi><orcidid>https://orcid.org/0000-0003-2475-4811</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-06, Vol.825, p.154024, Article 154024
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2434858299
source Elsevier ScienceDirect Journals
subjects 7068 aluminum alloy
Alumina
Aluminum
Aluminum oxide
Atomizing
Grain structure
Hydrothermal oxidation
Metal matrix composites
Oxidation
Particle size distribution
Particulate composites
Sintering
Sintering (powder metallurgy)
Water vapor
title Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Al%E2%80%93Al2O3%20powder%20composites%20obtained%20by%20hydrothermal%20oxidation%20method:%20Powders%20and%20sintered%20samples%20characterization&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Nalivaiko,%20Anton%20Yu&rft.date=2020-06-05&rft.volume=825&rft.spage=154024&rft.pages=154024-&rft.artnum=154024&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.154024&rft_dat=%3Cproquest_cross%3E2434858299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434858299&rft_id=info:pmid/&rft_els_id=S092583882030387X&rfr_iscdi=true