Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization
The aluminum powder composites based on Al–Al2O3 were obtained by the advanced in–situ partial hydrothermal oxidation method. The opportunity to obtain the controlled amount of alumina on the particle’s surfaces was studied. The water vapor temperature fixed at 90 °C and 120 °C gave the possibility...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2020-06, Vol.825, p.154024, Article 154024 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 154024 |
container_title | Journal of alloys and compounds |
container_volume | 825 |
creator | Nalivaiko, Anton Yu Arnautov, Alexey N. Zmanovsky, Sergey V. Ozherelkov, Dmitriy Yu Shurkin, Pavel K. Gromov, Alexander A. |
description | The aluminum powder composites based on Al–Al2O3 were obtained by the advanced in–situ partial hydrothermal oxidation method. The opportunity to obtain the controlled amount of alumina on the particle’s surfaces was studied. The water vapor temperature fixed at 90 °C and 120 °C gave the possibility to obtain two composites with the amount of Al2O3 at 9.90 wt % (OAP–1) and 18.75 wt % (OAP–2). Their median diameters were 41–42 μm with normal particle size distribution. The comparison with atomized 7068 alloy (AP–7068) powder showed their better particle sphericity. The OAP–1 sintered sample has the highest hardness of 471 MPa that provided by the highest density of 97.1% and the finest grain structure.
[Display omitted]
•Hydrothermal oxidation method was used to produce aluminum-alumina composites.•A detailed description of the hydrothermal oxidation method for the production of Al–Al2O3 composites was proposed.•The particles after oxidation and the surface of the sintered objects were examined in detail.•Hardness (HV) of Al–Al2O3 composites and standart 7068 aluminum alloy was compared. |
doi_str_mv | 10.1016/j.jallcom.2020.154024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434858299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092583882030387X</els_id><sourcerecordid>2434858299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-d7b842b18017560bc8abf4fdfe39a609ead353a8dc446cac8461cdda9748fd73</originalsourceid><addsrcrecordid>eNqFkN9KwzAUh4MoOKePIAS87kyatE29kTH8B4N5sfuQJilLaZuaZOq88h18Q5_EbN29Vwd-nO93OB8A1xjNMML5bTNrRNtK281SlMYsoyilJ2CCWUESmuflKZigMs0SRhg7BxfeNwghXBI8Adt5-_v9M2_TFYGD_VDawVg0WG-C9tBWQZheK1jt4GannA0b7TrRQvtplAjG9rDTYWPVHXw9wB6KXkFv-qBdxLzohjb2yI1wQsbMfB2oS3BWi9brq-OcgvXjw3rxnCxXTy-L-TKRFJGQqKJiNK0wQ7jIclRJJqqa1qrWpBQ5KrVQJCOCKUlpLoVkNMdSKVEWlNWqIFNwM9YOzr5ttQ-8sVvXx4s8pYSyjKVlGbeycUs6673TNR-c6YTbcYz4XjBv-FEw3wvmo-DI3Y-cjh-8G-24l0b3UivjtAxcWfNPwx96AYp6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434858299</pqid></control><display><type>article</type><title>Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization</title><source>Elsevier ScienceDirect Journals</source><creator>Nalivaiko, Anton Yu ; Arnautov, Alexey N. ; Zmanovsky, Sergey V. ; Ozherelkov, Dmitriy Yu ; Shurkin, Pavel K. ; Gromov, Alexander A.</creator><creatorcontrib>Nalivaiko, Anton Yu ; Arnautov, Alexey N. ; Zmanovsky, Sergey V. ; Ozherelkov, Dmitriy Yu ; Shurkin, Pavel K. ; Gromov, Alexander A.</creatorcontrib><description>The aluminum powder composites based on Al–Al2O3 were obtained by the advanced in–situ partial hydrothermal oxidation method. The opportunity to obtain the controlled amount of alumina on the particle’s surfaces was studied. The water vapor temperature fixed at 90 °C and 120 °C gave the possibility to obtain two composites with the amount of Al2O3 at 9.90 wt % (OAP–1) and 18.75 wt % (OAP–2). Their median diameters were 41–42 μm with normal particle size distribution. The comparison with atomized 7068 alloy (AP–7068) powder showed their better particle sphericity. The OAP–1 sintered sample has the highest hardness of 471 MPa that provided by the highest density of 97.1% and the finest grain structure.
[Display omitted]
•Hydrothermal oxidation method was used to produce aluminum-alumina composites.•A detailed description of the hydrothermal oxidation method for the production of Al–Al2O3 composites was proposed.•The particles after oxidation and the surface of the sintered objects were examined in detail.•Hardness (HV) of Al–Al2O3 composites and standart 7068 aluminum alloy was compared.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.154024</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>7068 aluminum alloy ; Alumina ; Aluminum ; Aluminum oxide ; Atomizing ; Grain structure ; Hydrothermal oxidation ; Metal matrix composites ; Oxidation ; Particle size distribution ; Particulate composites ; Sintering ; Sintering (powder metallurgy) ; Water vapor</subject><ispartof>Journal of alloys and compounds, 2020-06, Vol.825, p.154024, Article 154024</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-d7b842b18017560bc8abf4fdfe39a609ead353a8dc446cac8461cdda9748fd73</citedby><cites>FETCH-LOGICAL-c403t-d7b842b18017560bc8abf4fdfe39a609ead353a8dc446cac8461cdda9748fd73</cites><orcidid>0000-0003-2475-4811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092583882030387X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Nalivaiko, Anton Yu</creatorcontrib><creatorcontrib>Arnautov, Alexey N.</creatorcontrib><creatorcontrib>Zmanovsky, Sergey V.</creatorcontrib><creatorcontrib>Ozherelkov, Dmitriy Yu</creatorcontrib><creatorcontrib>Shurkin, Pavel K.</creatorcontrib><creatorcontrib>Gromov, Alexander A.</creatorcontrib><title>Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization</title><title>Journal of alloys and compounds</title><description>The aluminum powder composites based on Al–Al2O3 were obtained by the advanced in–situ partial hydrothermal oxidation method. The opportunity to obtain the controlled amount of alumina on the particle’s surfaces was studied. The water vapor temperature fixed at 90 °C and 120 °C gave the possibility to obtain two composites with the amount of Al2O3 at 9.90 wt % (OAP–1) and 18.75 wt % (OAP–2). Their median diameters were 41–42 μm with normal particle size distribution. The comparison with atomized 7068 alloy (AP–7068) powder showed their better particle sphericity. The OAP–1 sintered sample has the highest hardness of 471 MPa that provided by the highest density of 97.1% and the finest grain structure.
[Display omitted]
•Hydrothermal oxidation method was used to produce aluminum-alumina composites.•A detailed description of the hydrothermal oxidation method for the production of Al–Al2O3 composites was proposed.•The particles after oxidation and the surface of the sintered objects were examined in detail.•Hardness (HV) of Al–Al2O3 composites and standart 7068 aluminum alloy was compared.</description><subject>7068 aluminum alloy</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Atomizing</subject><subject>Grain structure</subject><subject>Hydrothermal oxidation</subject><subject>Metal matrix composites</subject><subject>Oxidation</subject><subject>Particle size distribution</subject><subject>Particulate composites</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Water vapor</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkN9KwzAUh4MoOKePIAS87kyatE29kTH8B4N5sfuQJilLaZuaZOq88h18Q5_EbN29Vwd-nO93OB8A1xjNMML5bTNrRNtK281SlMYsoyilJ2CCWUESmuflKZigMs0SRhg7BxfeNwghXBI8Adt5-_v9M2_TFYGD_VDawVg0WG-C9tBWQZheK1jt4GannA0b7TrRQvtplAjG9rDTYWPVHXw9wB6KXkFv-qBdxLzohjb2yI1wQsbMfB2oS3BWi9brq-OcgvXjw3rxnCxXTy-L-TKRFJGQqKJiNK0wQ7jIclRJJqqa1qrWpBQ5KrVQJCOCKUlpLoVkNMdSKVEWlNWqIFNwM9YOzr5ttQ-8sVvXx4s8pYSyjKVlGbeycUs6673TNR-c6YTbcYz4XjBv-FEw3wvmo-DI3Y-cjh-8G-24l0b3UivjtAxcWfNPwx96AYp6</recordid><startdate>20200605</startdate><enddate>20200605</enddate><creator>Nalivaiko, Anton Yu</creator><creator>Arnautov, Alexey N.</creator><creator>Zmanovsky, Sergey V.</creator><creator>Ozherelkov, Dmitriy Yu</creator><creator>Shurkin, Pavel K.</creator><creator>Gromov, Alexander A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2475-4811</orcidid></search><sort><creationdate>20200605</creationdate><title>Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization</title><author>Nalivaiko, Anton Yu ; Arnautov, Alexey N. ; Zmanovsky, Sergey V. ; Ozherelkov, Dmitriy Yu ; Shurkin, Pavel K. ; Gromov, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-d7b842b18017560bc8abf4fdfe39a609ead353a8dc446cac8461cdda9748fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>7068 aluminum alloy</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Atomizing</topic><topic>Grain structure</topic><topic>Hydrothermal oxidation</topic><topic>Metal matrix composites</topic><topic>Oxidation</topic><topic>Particle size distribution</topic><topic>Particulate composites</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nalivaiko, Anton Yu</creatorcontrib><creatorcontrib>Arnautov, Alexey N.</creatorcontrib><creatorcontrib>Zmanovsky, Sergey V.</creatorcontrib><creatorcontrib>Ozherelkov, Dmitriy Yu</creatorcontrib><creatorcontrib>Shurkin, Pavel K.</creatorcontrib><creatorcontrib>Gromov, Alexander A.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nalivaiko, Anton Yu</au><au>Arnautov, Alexey N.</au><au>Zmanovsky, Sergey V.</au><au>Ozherelkov, Dmitriy Yu</au><au>Shurkin, Pavel K.</au><au>Gromov, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-06-05</date><risdate>2020</risdate><volume>825</volume><spage>154024</spage><pages>154024-</pages><artnum>154024</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The aluminum powder composites based on Al–Al2O3 were obtained by the advanced in–situ partial hydrothermal oxidation method. The opportunity to obtain the controlled amount of alumina on the particle’s surfaces was studied. The water vapor temperature fixed at 90 °C and 120 °C gave the possibility to obtain two composites with the amount of Al2O3 at 9.90 wt % (OAP–1) and 18.75 wt % (OAP–2). Their median diameters were 41–42 μm with normal particle size distribution. The comparison with atomized 7068 alloy (AP–7068) powder showed their better particle sphericity. The OAP–1 sintered sample has the highest hardness of 471 MPa that provided by the highest density of 97.1% and the finest grain structure.
[Display omitted]
•Hydrothermal oxidation method was used to produce aluminum-alumina composites.•A detailed description of the hydrothermal oxidation method for the production of Al–Al2O3 composites was proposed.•The particles after oxidation and the surface of the sintered objects were examined in detail.•Hardness (HV) of Al–Al2O3 composites and standart 7068 aluminum alloy was compared.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.154024</doi><orcidid>https://orcid.org/0000-0003-2475-4811</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2020-06, Vol.825, p.154024, Article 154024 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2434858299 |
source | Elsevier ScienceDirect Journals |
subjects | 7068 aluminum alloy Alumina Aluminum Aluminum oxide Atomizing Grain structure Hydrothermal oxidation Metal matrix composites Oxidation Particle size distribution Particulate composites Sintering Sintering (powder metallurgy) Water vapor |
title | Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Al%E2%80%93Al2O3%20powder%20composites%20obtained%20by%20hydrothermal%20oxidation%20method:%20Powders%20and%20sintered%20samples%20characterization&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Nalivaiko,%20Anton%20Yu&rft.date=2020-06-05&rft.volume=825&rft.spage=154024&rft.pages=154024-&rft.artnum=154024&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.154024&rft_dat=%3Cproquest_cross%3E2434858299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434858299&rft_id=info:pmid/&rft_els_id=S092583882030387X&rfr_iscdi=true |