Characterization, corrosion resistance and hardness of rapidly solidified Ni–Nb alloys

In this research various Ni(-x)Nb (x = 10, 15, 20, 30, 40, 45, 52 and 57 wt %) alloys samples were rapidly solidified (RS) by using copper mold casting. High purity elements were used to produce the RS Ni–Nb samples. Even though Ni–Nb alloys have been extensively investigated over the past decades r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-07, Vol.829, p.154529, Article 154529
Hauptverfasser: Afonso, Conrado R.M., Martinez-Orozco, Katherine, Amigó, Vicente, Della Rovere, Carlos A., Spinelli, José E., Kiminami, Claudio S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 154529
container_title Journal of alloys and compounds
container_volume 829
creator Afonso, Conrado R.M.
Martinez-Orozco, Katherine
Amigó, Vicente
Della Rovere, Carlos A.
Spinelli, José E.
Kiminami, Claudio S.
description In this research various Ni(-x)Nb (x = 10, 15, 20, 30, 40, 45, 52 and 57 wt %) alloys samples were rapidly solidified (RS) by using copper mold casting. High purity elements were used to produce the RS Ni–Nb samples. Even though Ni–Nb alloys have been extensively investigated over the past decades regarding thermodynamics, phase diagram and heat treatment; as-solidified microstructures and properties generated under non-equilibrium conditions remain undetermined for this alloy system. The Ni–Nb system is characterized by two eutectic reactions (termed E1: 22.5 wt % Nb and E2: 52 wt % Nb) and three Ni3Nb, Ni6Nb7 and Ni8Nb intermetallics, being the later barely reported in literature. The E1 group of alloys (i.e., x = 10, 15, 20 wt%) showed the microstructures constituted by Ni-fcc cellular/dendritic matrix enveloped by Ni + Ni3Nb eutectic. In contrast, the higher niobium (Nb) containing compositions (E2 group: x = 40, 45, 52 and 57 wt%) exhibited plate-like morphologies associated with either Ni3Nb or Ni6Nb7 phases. Characterization of the microstructure (cell/dendrites) spacing associated with the E1 group of alloys allowed the cooling rates to be estimated. A mixture of irregular γ″-Ni3Nb and needle-like δ-Ni3Nb morphologies is present in the Ni–20%Nb alloy solidified under a cooling rate of 1.7 × 103 K/s. The passive range of the Ni–30%Nb or higher Nb content alloys was demonstrated to be at least two-fold higher when compared to that of the commercial 625 Ni-based superalloy. The concurrent evaluation of key requirements for Ni–Nb alloys such as Vickers microhardness and passivability were determined as function of Nb content. They are both strongly affected by the Nb containing. [Display omitted] •Corrosion behavior and mechanical strength of fast cooled Ni–Nb alloys were determined.•Irregular γ″-Ni3Nb and needle-like δ-Ni3Nb phases coexist in the as-cast Ni–20%Nb alloy.•Localized corrosion resistances are improved with increasing in Nb content.
doi_str_mv 10.1016/j.jallcom.2020.154529
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434858145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820308926</els_id><sourcerecordid>2434858145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-d7632a48f6bd766ee4461b41d92938654dfa83a66c7c4e090f1874eb067b0bb13</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuPIATcOjWZZDKZlUixKpS6UXAXMskdzDCd1GQq1JXv4Bv6JKZM967u4XLuz_kQuqRkRgkVN-2s1V1n_HqWkzz1Cl7k1RGaUFmyjAtRHaMJqfIik0zKU3QWY0sIoRWjE_Q2f9dBmwGC-9KD8_01Nj4EH5PEAaKLg-4NYN1bnJy2hxixb3DQG2e7HY6-c9Y1Dixeud_vn1WN0y9-F8_RSaO7CBeHOkWvi_uX-WO2fH54mt8tM8NYOWS2FCzXXDaiTlIAcC5ozamt8opJUXDbaMm0EKY0HEhFmpSKQ01EWZO6pmyKrsa9m-A_thAH1fpt6NNJlXPGZSEpL5KrGF0mRYsBGrUJbq3DTlGi9hBVqw4Q1R6iGiGmudtxDlKETwdBReMgAbEugBmU9e6fDX-uqH6p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434858145</pqid></control><display><type>article</type><title>Characterization, corrosion resistance and hardness of rapidly solidified Ni–Nb alloys</title><source>Access via ScienceDirect (Elsevier)</source><creator>Afonso, Conrado R.M. ; Martinez-Orozco, Katherine ; Amigó, Vicente ; Della Rovere, Carlos A. ; Spinelli, José E. ; Kiminami, Claudio S.</creator><creatorcontrib>Afonso, Conrado R.M. ; Martinez-Orozco, Katherine ; Amigó, Vicente ; Della Rovere, Carlos A. ; Spinelli, José E. ; Kiminami, Claudio S.</creatorcontrib><description>In this research various Ni(-x)Nb (x = 10, 15, 20, 30, 40, 45, 52 and 57 wt %) alloys samples were rapidly solidified (RS) by using copper mold casting. High purity elements were used to produce the RS Ni–Nb samples. Even though Ni–Nb alloys have been extensively investigated over the past decades regarding thermodynamics, phase diagram and heat treatment; as-solidified microstructures and properties generated under non-equilibrium conditions remain undetermined for this alloy system. The Ni–Nb system is characterized by two eutectic reactions (termed E1: 22.5 wt % Nb and E2: 52 wt % Nb) and three Ni3Nb, Ni6Nb7 and Ni8Nb intermetallics, being the later barely reported in literature. The E1 group of alloys (i.e., x = 10, 15, 20 wt%) showed the microstructures constituted by Ni-fcc cellular/dendritic matrix enveloped by Ni + Ni3Nb eutectic. In contrast, the higher niobium (Nb) containing compositions (E2 group: x = 40, 45, 52 and 57 wt%) exhibited plate-like morphologies associated with either Ni3Nb or Ni6Nb7 phases. Characterization of the microstructure (cell/dendrites) spacing associated with the E1 group of alloys allowed the cooling rates to be estimated. A mixture of irregular γ″-Ni3Nb and needle-like δ-Ni3Nb morphologies is present in the Ni–20%Nb alloy solidified under a cooling rate of 1.7 × 103 K/s. The passive range of the Ni–30%Nb or higher Nb content alloys was demonstrated to be at least two-fold higher when compared to that of the commercial 625 Ni-based superalloy. The concurrent evaluation of key requirements for Ni–Nb alloys such as Vickers microhardness and passivability were determined as function of Nb content. They are both strongly affected by the Nb containing. [Display omitted] •Corrosion behavior and mechanical strength of fast cooled Ni–Nb alloys were determined.•Irregular γ″-Ni3Nb and needle-like δ-Ni3Nb phases coexist in the as-cast Ni–20%Nb alloy.•Localized corrosion resistances are improved with increasing in Nb content.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.154529</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy systems ; Alloys ; Cooling rate ; Corrosion resistance ; Diamond pyramid hardness ; Equilibrium conditions ; Eutectic reactions ; Hardness ; Heat treatment ; Intermetallic compounds ; Microstructure ; Morphology ; Ni-Nb alloys ; Nickel base alloys ; Niobium base alloys ; Passive films ; Phase diagrams ; Rapid solidification ; SEM ; Superalloys ; TEM</subject><ispartof>Journal of alloys and compounds, 2020-07, Vol.829, p.154529, Article 154529</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-d7632a48f6bd766ee4461b41d92938654dfa83a66c7c4e090f1874eb067b0bb13</citedby><cites>FETCH-LOGICAL-c337t-d7632a48f6bd766ee4461b41d92938654dfa83a66c7c4e090f1874eb067b0bb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2020.154529$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Afonso, Conrado R.M.</creatorcontrib><creatorcontrib>Martinez-Orozco, Katherine</creatorcontrib><creatorcontrib>Amigó, Vicente</creatorcontrib><creatorcontrib>Della Rovere, Carlos A.</creatorcontrib><creatorcontrib>Spinelli, José E.</creatorcontrib><creatorcontrib>Kiminami, Claudio S.</creatorcontrib><title>Characterization, corrosion resistance and hardness of rapidly solidified Ni–Nb alloys</title><title>Journal of alloys and compounds</title><description>In this research various Ni(-x)Nb (x = 10, 15, 20, 30, 40, 45, 52 and 57 wt %) alloys samples were rapidly solidified (RS) by using copper mold casting. High purity elements were used to produce the RS Ni–Nb samples. Even though Ni–Nb alloys have been extensively investigated over the past decades regarding thermodynamics, phase diagram and heat treatment; as-solidified microstructures and properties generated under non-equilibrium conditions remain undetermined for this alloy system. The Ni–Nb system is characterized by two eutectic reactions (termed E1: 22.5 wt % Nb and E2: 52 wt % Nb) and three Ni3Nb, Ni6Nb7 and Ni8Nb intermetallics, being the later barely reported in literature. The E1 group of alloys (i.e., x = 10, 15, 20 wt%) showed the microstructures constituted by Ni-fcc cellular/dendritic matrix enveloped by Ni + Ni3Nb eutectic. In contrast, the higher niobium (Nb) containing compositions (E2 group: x = 40, 45, 52 and 57 wt%) exhibited plate-like morphologies associated with either Ni3Nb or Ni6Nb7 phases. Characterization of the microstructure (cell/dendrites) spacing associated with the E1 group of alloys allowed the cooling rates to be estimated. A mixture of irregular γ″-Ni3Nb and needle-like δ-Ni3Nb morphologies is present in the Ni–20%Nb alloy solidified under a cooling rate of 1.7 × 103 K/s. The passive range of the Ni–30%Nb or higher Nb content alloys was demonstrated to be at least two-fold higher when compared to that of the commercial 625 Ni-based superalloy. The concurrent evaluation of key requirements for Ni–Nb alloys such as Vickers microhardness and passivability were determined as function of Nb content. They are both strongly affected by the Nb containing. [Display omitted] •Corrosion behavior and mechanical strength of fast cooled Ni–Nb alloys were determined.•Irregular γ″-Ni3Nb and needle-like δ-Ni3Nb phases coexist in the as-cast Ni–20%Nb alloy.•Localized corrosion resistances are improved with increasing in Nb content.</description><subject>Alloy systems</subject><subject>Alloys</subject><subject>Cooling rate</subject><subject>Corrosion resistance</subject><subject>Diamond pyramid hardness</subject><subject>Equilibrium conditions</subject><subject>Eutectic reactions</subject><subject>Hardness</subject><subject>Heat treatment</subject><subject>Intermetallic compounds</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Ni-Nb alloys</subject><subject>Nickel base alloys</subject><subject>Niobium base alloys</subject><subject>Passive films</subject><subject>Phase diagrams</subject><subject>Rapid solidification</subject><subject>SEM</subject><subject>Superalloys</subject><subject>TEM</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuPIATcOjWZZDKZlUixKpS6UXAXMskdzDCd1GQq1JXv4Bv6JKZM967u4XLuz_kQuqRkRgkVN-2s1V1n_HqWkzz1Cl7k1RGaUFmyjAtRHaMJqfIik0zKU3QWY0sIoRWjE_Q2f9dBmwGC-9KD8_01Nj4EH5PEAaKLg-4NYN1bnJy2hxixb3DQG2e7HY6-c9Y1Dixeud_vn1WN0y9-F8_RSaO7CBeHOkWvi_uX-WO2fH54mt8tM8NYOWS2FCzXXDaiTlIAcC5ozamt8opJUXDbaMm0EKY0HEhFmpSKQ01EWZO6pmyKrsa9m-A_thAH1fpt6NNJlXPGZSEpL5KrGF0mRYsBGrUJbq3DTlGi9hBVqw4Q1R6iGiGmudtxDlKETwdBReMgAbEugBmU9e6fDX-uqH6p</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Afonso, Conrado R.M.</creator><creator>Martinez-Orozco, Katherine</creator><creator>Amigó, Vicente</creator><creator>Della Rovere, Carlos A.</creator><creator>Spinelli, José E.</creator><creator>Kiminami, Claudio S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200715</creationdate><title>Characterization, corrosion resistance and hardness of rapidly solidified Ni–Nb alloys</title><author>Afonso, Conrado R.M. ; Martinez-Orozco, Katherine ; Amigó, Vicente ; Della Rovere, Carlos A. ; Spinelli, José E. ; Kiminami, Claudio S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-d7632a48f6bd766ee4461b41d92938654dfa83a66c7c4e090f1874eb067b0bb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloy systems</topic><topic>Alloys</topic><topic>Cooling rate</topic><topic>Corrosion resistance</topic><topic>Diamond pyramid hardness</topic><topic>Equilibrium conditions</topic><topic>Eutectic reactions</topic><topic>Hardness</topic><topic>Heat treatment</topic><topic>Intermetallic compounds</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Ni-Nb alloys</topic><topic>Nickel base alloys</topic><topic>Niobium base alloys</topic><topic>Passive films</topic><topic>Phase diagrams</topic><topic>Rapid solidification</topic><topic>SEM</topic><topic>Superalloys</topic><topic>TEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afonso, Conrado R.M.</creatorcontrib><creatorcontrib>Martinez-Orozco, Katherine</creatorcontrib><creatorcontrib>Amigó, Vicente</creatorcontrib><creatorcontrib>Della Rovere, Carlos A.</creatorcontrib><creatorcontrib>Spinelli, José E.</creatorcontrib><creatorcontrib>Kiminami, Claudio S.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afonso, Conrado R.M.</au><au>Martinez-Orozco, Katherine</au><au>Amigó, Vicente</au><au>Della Rovere, Carlos A.</au><au>Spinelli, José E.</au><au>Kiminami, Claudio S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization, corrosion resistance and hardness of rapidly solidified Ni–Nb alloys</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>829</volume><spage>154529</spage><pages>154529-</pages><artnum>154529</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>In this research various Ni(-x)Nb (x = 10, 15, 20, 30, 40, 45, 52 and 57 wt %) alloys samples were rapidly solidified (RS) by using copper mold casting. High purity elements were used to produce the RS Ni–Nb samples. Even though Ni–Nb alloys have been extensively investigated over the past decades regarding thermodynamics, phase diagram and heat treatment; as-solidified microstructures and properties generated under non-equilibrium conditions remain undetermined for this alloy system. The Ni–Nb system is characterized by two eutectic reactions (termed E1: 22.5 wt % Nb and E2: 52 wt % Nb) and three Ni3Nb, Ni6Nb7 and Ni8Nb intermetallics, being the later barely reported in literature. The E1 group of alloys (i.e., x = 10, 15, 20 wt%) showed the microstructures constituted by Ni-fcc cellular/dendritic matrix enveloped by Ni + Ni3Nb eutectic. In contrast, the higher niobium (Nb) containing compositions (E2 group: x = 40, 45, 52 and 57 wt%) exhibited plate-like morphologies associated with either Ni3Nb or Ni6Nb7 phases. Characterization of the microstructure (cell/dendrites) spacing associated with the E1 group of alloys allowed the cooling rates to be estimated. A mixture of irregular γ″-Ni3Nb and needle-like δ-Ni3Nb morphologies is present in the Ni–20%Nb alloy solidified under a cooling rate of 1.7 × 103 K/s. The passive range of the Ni–30%Nb or higher Nb content alloys was demonstrated to be at least two-fold higher when compared to that of the commercial 625 Ni-based superalloy. The concurrent evaluation of key requirements for Ni–Nb alloys such as Vickers microhardness and passivability were determined as function of Nb content. They are both strongly affected by the Nb containing. [Display omitted] •Corrosion behavior and mechanical strength of fast cooled Ni–Nb alloys were determined.•Irregular γ″-Ni3Nb and needle-like δ-Ni3Nb phases coexist in the as-cast Ni–20%Nb alloy.•Localized corrosion resistances are improved with increasing in Nb content.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.154529</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-07, Vol.829, p.154529, Article 154529
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2434858145
source Access via ScienceDirect (Elsevier)
subjects Alloy systems
Alloys
Cooling rate
Corrosion resistance
Diamond pyramid hardness
Equilibrium conditions
Eutectic reactions
Hardness
Heat treatment
Intermetallic compounds
Microstructure
Morphology
Ni-Nb alloys
Nickel base alloys
Niobium base alloys
Passive films
Phase diagrams
Rapid solidification
SEM
Superalloys
TEM
title Characterization, corrosion resistance and hardness of rapidly solidified Ni–Nb alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T20%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization,%20corrosion%20resistance%20and%20hardness%20of%20rapidly%20solidified%20Ni%E2%80%93Nb%20alloys&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Afonso,%20Conrado%20R.M.&rft.date=2020-07-15&rft.volume=829&rft.spage=154529&rft.pages=154529-&rft.artnum=154529&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.154529&rft_dat=%3Cproquest_cross%3E2434858145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434858145&rft_id=info:pmid/&rft_els_id=S0925838820308926&rfr_iscdi=true