Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method

The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built, and the vacuum chamber, cooling roller and sample were taken into account as a system. The existing mature technology was in order to verify the correctness of simulation. The rapid qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2020-10, Vol.39 (10), p.1145-1150
Hauptverfasser: Wang, Xu-Chao, Yue, Ming, Zhang, Dong-Tao, Liu, Wei-Qiang, Zhu, Ming-Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1150
container_issue 10
container_start_page 1145
container_title Rare metals
container_volume 39
creator Wang, Xu-Chao
Yue, Ming
Zhang, Dong-Tao
Liu, Wei-Qiang
Zhu, Ming-Gang
description The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built, and the vacuum chamber, cooling roller and sample were taken into account as a system. The existing mature technology was in order to verify the correctness of simulation. The rapid quenching ribbons with different roll speeds were used as the simulation objects. The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained. The experimental thickness of the ribbons is proportional to the theoretical thickness. In the same spray condition, with the roll speed increasing, the thickness decreases linearly. At the speed range of 25–30 m·s −1 , the simulated calculation date is close to the experimental date, which can be considered as an ideal technological parameter.
doi_str_mv 10.1007/s12598-019-01229-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434838564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207655512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-12ecc93699ae1955cb6e246624e2c66ddca5df5c7081dac1beb44aa8909706e93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMQdsx3biESq-pKosMFuOcympHLvYyZB_j6FIbB1O96H3uTu9CF1TcksJqe4SZULVBaEqB2OqmE_QgtayKipai9NcE0ILIhg9Rxcp7QjhXEqyQM1mGiD21jic-mFyZuyDx6HLnd86wDE4BxEP4Eac9r33eYy7EPGmfYIHbJwLM25MghZnrut9PwIGBwP4MVPjZ2gv0VlnXIKrv7xEH0-P76uXYv32_Lq6Xxe25NVYUAbWqlIqZYAqIWwjgeUnGQdmpWxba0TbCVuRmrbG0gYazo2pFVEVkaDKJbo57N3H8DVBGvUuTNHnk5rxktdlLSQ_qmKkkkIIyrKKHVQ2hpQidHof-8HEWVOifxzXB8d1dlz_Oq7nDJUHKGWx30L8X32E-gZl5oRp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207655512</pqid></control><display><type>article</type><title>Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Xu-Chao ; Yue, Ming ; Zhang, Dong-Tao ; Liu, Wei-Qiang ; Zhu, Ming-Gang</creator><creatorcontrib>Wang, Xu-Chao ; Yue, Ming ; Zhang, Dong-Tao ; Liu, Wei-Qiang ; Zhu, Ming-Gang</creatorcontrib><description>The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built, and the vacuum chamber, cooling roller and sample were taken into account as a system. The existing mature technology was in order to verify the correctness of simulation. The rapid quenching ribbons with different roll speeds were used as the simulation objects. The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained. The experimental thickness of the ribbons is proportional to the theoretical thickness. In the same spray condition, with the roll speed increasing, the thickness decreases linearly. At the speed range of 25–30 m·s −1 , the simulated calculation date is close to the experimental date, which can be considered as an ideal technological parameter.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-019-01229-y</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Alloying elements ; Biomaterials ; Chemistry and Materials Science ; Computer simulation ; Energy ; Finite element method ; Magnetism ; Materials Engineering ; Materials Science ; Mathematical models ; Melt spinning ; Metallic Materials ; Model testing ; Nanoscale Science and Technology ; Physical Chemistry ; Rapid quenching (metallurgy) ; Simulation ; Thickness ; Vacuum chambers</subject><ispartof>Rare metals, 2020-10, Vol.39 (10), p.1145-1150</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Rare Metals is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-12ecc93699ae1955cb6e246624e2c66ddca5df5c7081dac1beb44aa8909706e93</citedby><cites>FETCH-LOGICAL-c347t-12ecc93699ae1955cb6e246624e2c66ddca5df5c7081dac1beb44aa8909706e93</cites><orcidid>0000-0003-1153-0624 ; 0000-0001-6239-244X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-019-01229-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-019-01229-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Xu-Chao</creatorcontrib><creatorcontrib>Yue, Ming</creatorcontrib><creatorcontrib>Zhang, Dong-Tao</creatorcontrib><creatorcontrib>Liu, Wei-Qiang</creatorcontrib><creatorcontrib>Zhu, Ming-Gang</creatorcontrib><title>Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built, and the vacuum chamber, cooling roller and sample were taken into account as a system. The existing mature technology was in order to verify the correctness of simulation. The rapid quenching ribbons with different roll speeds were used as the simulation objects. The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained. The experimental thickness of the ribbons is proportional to the theoretical thickness. In the same spray condition, with the roll speed increasing, the thickness decreases linearly. At the speed range of 25–30 m·s −1 , the simulated calculation date is close to the experimental date, which can be considered as an ideal technological parameter.</description><subject>Alloying elements</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Finite element method</subject><subject>Magnetism</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Melt spinning</subject><subject>Metallic Materials</subject><subject>Model testing</subject><subject>Nanoscale Science and Technology</subject><subject>Physical Chemistry</subject><subject>Rapid quenching (metallurgy)</subject><subject>Simulation</subject><subject>Thickness</subject><subject>Vacuum chambers</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMQdsx3biESq-pKosMFuOcympHLvYyZB_j6FIbB1O96H3uTu9CF1TcksJqe4SZULVBaEqB2OqmE_QgtayKipai9NcE0ILIhg9Rxcp7QjhXEqyQM1mGiD21jic-mFyZuyDx6HLnd86wDE4BxEP4Eac9r33eYy7EPGmfYIHbJwLM25MghZnrut9PwIGBwP4MVPjZ2gv0VlnXIKrv7xEH0-P76uXYv32_Lq6Xxe25NVYUAbWqlIqZYAqIWwjgeUnGQdmpWxba0TbCVuRmrbG0gYazo2pFVEVkaDKJbo57N3H8DVBGvUuTNHnk5rxktdlLSQ_qmKkkkIIyrKKHVQ2hpQidHof-8HEWVOifxzXB8d1dlz_Oq7nDJUHKGWx30L8X32E-gZl5oRp</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wang, Xu-Chao</creator><creator>Yue, Ming</creator><creator>Zhang, Dong-Tao</creator><creator>Liu, Wei-Qiang</creator><creator>Zhu, Ming-Gang</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1153-0624</orcidid><orcidid>https://orcid.org/0000-0001-6239-244X</orcidid></search><sort><creationdate>20201001</creationdate><title>Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method</title><author>Wang, Xu-Chao ; Yue, Ming ; Zhang, Dong-Tao ; Liu, Wei-Qiang ; Zhu, Ming-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-12ecc93699ae1955cb6e246624e2c66ddca5df5c7081dac1beb44aa8909706e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloying elements</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Finite element method</topic><topic>Magnetism</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Melt spinning</topic><topic>Metallic Materials</topic><topic>Model testing</topic><topic>Nanoscale Science and Technology</topic><topic>Physical Chemistry</topic><topic>Rapid quenching (metallurgy)</topic><topic>Simulation</topic><topic>Thickness</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xu-Chao</creatorcontrib><creatorcontrib>Yue, Ming</creatorcontrib><creatorcontrib>Zhang, Dong-Tao</creatorcontrib><creatorcontrib>Liu, Wei-Qiang</creatorcontrib><creatorcontrib>Zhu, Ming-Gang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xu-Chao</au><au>Yue, Ming</au><au>Zhang, Dong-Tao</au><au>Liu, Wei-Qiang</au><au>Zhu, Ming-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>39</volume><issue>10</issue><spage>1145</spage><epage>1150</epage><pages>1145-1150</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built, and the vacuum chamber, cooling roller and sample were taken into account as a system. The existing mature technology was in order to verify the correctness of simulation. The rapid quenching ribbons with different roll speeds were used as the simulation objects. The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained. The experimental thickness of the ribbons is proportional to the theoretical thickness. In the same spray condition, with the roll speed increasing, the thickness decreases linearly. At the speed range of 25–30 m·s −1 , the simulated calculation date is close to the experimental date, which can be considered as an ideal technological parameter.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-019-01229-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1153-0624</orcidid><orcidid>https://orcid.org/0000-0001-6239-244X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2020-10, Vol.39 (10), p.1145-1150
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2434838564
source SpringerLink Journals; Alma/SFX Local Collection
subjects Alloying elements
Biomaterials
Chemistry and Materials Science
Computer simulation
Energy
Finite element method
Magnetism
Materials Engineering
Materials Science
Mathematical models
Melt spinning
Metallic Materials
Model testing
Nanoscale Science and Technology
Physical Chemistry
Rapid quenching (metallurgy)
Simulation
Thickness
Vacuum chambers
title Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20single%20roller%20melt%20spinning%20for%20NdFeB%20alloy%20based%20on%20finite%20element%20method&rft.jtitle=Rare%20metals&rft.au=Wang,%20Xu-Chao&rft.date=2020-10-01&rft.volume=39&rft.issue=10&rft.spage=1145&rft.epage=1150&rft.pages=1145-1150&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-019-01229-y&rft_dat=%3Cproquest_cross%3E2207655512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207655512&rft_id=info:pmid/&rfr_iscdi=true