Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method
The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built, and the vacuum chamber, cooling roller and sample were taken into account as a system. The existing mature technology was in order to verify the correctness of simulation. The rapid qu...
Gespeichert in:
Veröffentlicht in: | Rare metals 2020-10, Vol.39 (10), p.1145-1150 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1150 |
---|---|
container_issue | 10 |
container_start_page | 1145 |
container_title | Rare metals |
container_volume | 39 |
creator | Wang, Xu-Chao Yue, Ming Zhang, Dong-Tao Liu, Wei-Qiang Zhu, Ming-Gang |
description | The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built, and the vacuum chamber, cooling roller and sample were taken into account as a system. The existing mature technology was in order to verify the correctness of simulation. The rapid quenching ribbons with different roll speeds were used as the simulation objects. The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained. The experimental thickness of the ribbons is proportional to the theoretical thickness. In the same spray condition, with the roll speed increasing, the thickness decreases linearly. At the speed range of 25–30 m·s
−1
, the simulated calculation date is close to the experimental date, which can be considered as an ideal technological parameter. |
doi_str_mv | 10.1007/s12598-019-01229-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434838564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207655512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-12ecc93699ae1955cb6e246624e2c66ddca5df5c7081dac1beb44aa8909706e93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMQdsx3biESq-pKosMFuOcympHLvYyZB_j6FIbB1O96H3uTu9CF1TcksJqe4SZULVBaEqB2OqmE_QgtayKipai9NcE0ILIhg9Rxcp7QjhXEqyQM1mGiD21jic-mFyZuyDx6HLnd86wDE4BxEP4Eac9r33eYy7EPGmfYIHbJwLM25MghZnrut9PwIGBwP4MVPjZ2gv0VlnXIKrv7xEH0-P76uXYv32_Lq6Xxe25NVYUAbWqlIqZYAqIWwjgeUnGQdmpWxba0TbCVuRmrbG0gYazo2pFVEVkaDKJbo57N3H8DVBGvUuTNHnk5rxktdlLSQ_qmKkkkIIyrKKHVQ2hpQidHof-8HEWVOifxzXB8d1dlz_Oq7nDJUHKGWx30L8X32E-gZl5oRp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207655512</pqid></control><display><type>article</type><title>Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Xu-Chao ; Yue, Ming ; Zhang, Dong-Tao ; Liu, Wei-Qiang ; Zhu, Ming-Gang</creator><creatorcontrib>Wang, Xu-Chao ; Yue, Ming ; Zhang, Dong-Tao ; Liu, Wei-Qiang ; Zhu, Ming-Gang</creatorcontrib><description>The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built, and the vacuum chamber, cooling roller and sample were taken into account as a system. The existing mature technology was in order to verify the correctness of simulation. The rapid quenching ribbons with different roll speeds were used as the simulation objects. The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained. The experimental thickness of the ribbons is proportional to the theoretical thickness. In the same spray condition, with the roll speed increasing, the thickness decreases linearly. At the speed range of 25–30 m·s
−1
, the simulated calculation date is close to the experimental date, which can be considered as an ideal technological parameter.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-019-01229-y</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Alloying elements ; Biomaterials ; Chemistry and Materials Science ; Computer simulation ; Energy ; Finite element method ; Magnetism ; Materials Engineering ; Materials Science ; Mathematical models ; Melt spinning ; Metallic Materials ; Model testing ; Nanoscale Science and Technology ; Physical Chemistry ; Rapid quenching (metallurgy) ; Simulation ; Thickness ; Vacuum chambers</subject><ispartof>Rare metals, 2020-10, Vol.39 (10), p.1145-1150</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Rare Metals is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-12ecc93699ae1955cb6e246624e2c66ddca5df5c7081dac1beb44aa8909706e93</citedby><cites>FETCH-LOGICAL-c347t-12ecc93699ae1955cb6e246624e2c66ddca5df5c7081dac1beb44aa8909706e93</cites><orcidid>0000-0003-1153-0624 ; 0000-0001-6239-244X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-019-01229-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-019-01229-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Xu-Chao</creatorcontrib><creatorcontrib>Yue, Ming</creatorcontrib><creatorcontrib>Zhang, Dong-Tao</creatorcontrib><creatorcontrib>Liu, Wei-Qiang</creatorcontrib><creatorcontrib>Zhu, Ming-Gang</creatorcontrib><title>Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built, and the vacuum chamber, cooling roller and sample were taken into account as a system. The existing mature technology was in order to verify the correctness of simulation. The rapid quenching ribbons with different roll speeds were used as the simulation objects. The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained. The experimental thickness of the ribbons is proportional to the theoretical thickness. In the same spray condition, with the roll speed increasing, the thickness decreases linearly. At the speed range of 25–30 m·s
−1
, the simulated calculation date is close to the experimental date, which can be considered as an ideal technological parameter.</description><subject>Alloying elements</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Finite element method</subject><subject>Magnetism</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Melt spinning</subject><subject>Metallic Materials</subject><subject>Model testing</subject><subject>Nanoscale Science and Technology</subject><subject>Physical Chemistry</subject><subject>Rapid quenching (metallurgy)</subject><subject>Simulation</subject><subject>Thickness</subject><subject>Vacuum chambers</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMQdsx3biESq-pKosMFuOcympHLvYyZB_j6FIbB1O96H3uTu9CF1TcksJqe4SZULVBaEqB2OqmE_QgtayKipai9NcE0ILIhg9Rxcp7QjhXEqyQM1mGiD21jic-mFyZuyDx6HLnd86wDE4BxEP4Eac9r33eYy7EPGmfYIHbJwLM25MghZnrut9PwIGBwP4MVPjZ2gv0VlnXIKrv7xEH0-P76uXYv32_Lq6Xxe25NVYUAbWqlIqZYAqIWwjgeUnGQdmpWxba0TbCVuRmrbG0gYazo2pFVEVkaDKJbo57N3H8DVBGvUuTNHnk5rxktdlLSQ_qmKkkkIIyrKKHVQ2hpQidHof-8HEWVOifxzXB8d1dlz_Oq7nDJUHKGWx30L8X32E-gZl5oRp</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wang, Xu-Chao</creator><creator>Yue, Ming</creator><creator>Zhang, Dong-Tao</creator><creator>Liu, Wei-Qiang</creator><creator>Zhu, Ming-Gang</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1153-0624</orcidid><orcidid>https://orcid.org/0000-0001-6239-244X</orcidid></search><sort><creationdate>20201001</creationdate><title>Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method</title><author>Wang, Xu-Chao ; Yue, Ming ; Zhang, Dong-Tao ; Liu, Wei-Qiang ; Zhu, Ming-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-12ecc93699ae1955cb6e246624e2c66ddca5df5c7081dac1beb44aa8909706e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloying elements</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Finite element method</topic><topic>Magnetism</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Melt spinning</topic><topic>Metallic Materials</topic><topic>Model testing</topic><topic>Nanoscale Science and Technology</topic><topic>Physical Chemistry</topic><topic>Rapid quenching (metallurgy)</topic><topic>Simulation</topic><topic>Thickness</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xu-Chao</creatorcontrib><creatorcontrib>Yue, Ming</creatorcontrib><creatorcontrib>Zhang, Dong-Tao</creatorcontrib><creatorcontrib>Liu, Wei-Qiang</creatorcontrib><creatorcontrib>Zhu, Ming-Gang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xu-Chao</au><au>Yue, Ming</au><au>Zhang, Dong-Tao</au><au>Liu, Wei-Qiang</au><au>Zhu, Ming-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>39</volume><issue>10</issue><spage>1145</spage><epage>1150</epage><pages>1145-1150</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The numerical simulation model of single roller melt spinning for rapid quenching process of NdFeB alloy was built, and the vacuum chamber, cooling roller and sample were taken into account as a system. The existing mature technology was in order to verify the correctness of simulation. The rapid quenching ribbons with different roll speeds were used as the simulation objects. The results of the numerical simulation and experiments show that the validity of the model has been testified and the reasons of the formation of complete quenching ribbons and by-product have been explained. The experimental thickness of the ribbons is proportional to the theoretical thickness. In the same spray condition, with the roll speed increasing, the thickness decreases linearly. At the speed range of 25–30 m·s
−1
, the simulated calculation date is close to the experimental date, which can be considered as an ideal technological parameter.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-019-01229-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1153-0624</orcidid><orcidid>https://orcid.org/0000-0001-6239-244X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2020-10, Vol.39 (10), p.1145-1150 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2434838564 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Alloying elements Biomaterials Chemistry and Materials Science Computer simulation Energy Finite element method Magnetism Materials Engineering Materials Science Mathematical models Melt spinning Metallic Materials Model testing Nanoscale Science and Technology Physical Chemistry Rapid quenching (metallurgy) Simulation Thickness Vacuum chambers |
title | Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20single%20roller%20melt%20spinning%20for%20NdFeB%20alloy%20based%20on%20finite%20element%20method&rft.jtitle=Rare%20metals&rft.au=Wang,%20Xu-Chao&rft.date=2020-10-01&rft.volume=39&rft.issue=10&rft.spage=1145&rft.epage=1150&rft.pages=1145-1150&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-019-01229-y&rft_dat=%3Cproquest_cross%3E2207655512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207655512&rft_id=info:pmid/&rfr_iscdi=true |