Urea Decomposition and Implication for NOx Reduction with Cu‐Zeolite and Vanadia‐Selective Catalytic Reduction

Understanding urea decomposition is critical to achieve highly efficient selective catalytic reduction (SCR). The urea decomposition process in an exhaust pipe and in Cu‐zeolite and vanadia‐SCR (V‐SCR) was studied in engine test cells. The unconverted urea at the SCR inlet can be substantial at lowe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2020-09, Vol.43 (9), p.1758-1764
Hauptverfasser: Wu, Yi-Jiang, Wang, Fengshuang, Tang, Weiyong, Kakwani, Ramesh, Hou, Yaling, Feng, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1764
container_issue 9
container_start_page 1758
container_title Chemical engineering & technology
container_volume 43
creator Wu, Yi-Jiang
Wang, Fengshuang
Tang, Weiyong
Kakwani, Ramesh
Hou, Yaling
Feng, Gang
description Understanding urea decomposition is critical to achieve highly efficient selective catalytic reduction (SCR). The urea decomposition process in an exhaust pipe and in Cu‐zeolite and vanadia‐SCR (V‐SCR) was studied in engine test cells. The unconverted urea at the SCR inlet can be substantial at lower temperatures. HNCO and NH3 are two dominant products at the SCR inlet. Urea and HNCO continue to decompose in SCR catalysts, with a rate much faster than in the homogeneous stream. The HNCO hydrolysis process is extremely efficient in Cu‐zeolite SCR and the abundant NH3 from urea overdosing can improve the NOx conversion efficiency. While for V‐SCR, the HNCO hydrolysis reaction can become the rate‐limiting step (especially after aging), abundant urea at low temperatures impairs NOx reduction. HNCO and NH3 were found as two dominant decomposition products at the selective catalytic reduction (SCR) inlet, almost always at a molar ratio of 1:1. HNCO hydrolysis in the catalyst in Cu‐zeolite SCR is extremely efficient, whereas it can become the rate‐limiting step for V‐SCR, especially for aged catalysts. It is recommended to adopt different low‐temperature dosing strategies for different SCR catalysts.
doi_str_mv 10.1002/ceat.202000036
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2434707318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434707318</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1856-840936ccb3efbd9019d34e6eeef7c354c20b63f6ee0fd16e0695522f1cffdfad3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EEqWwZW2JdYofidMsq1CgUkUlaFmwsVx7DK7SJORByY5P4Bv5EtwWldmM7tWZhy5Cl5QMKCHsWoNqBoww4ouLI9SjEaNBSFl0jHok4SSIIypO0VldrzxCveihalGBwjegi3VZ1K5xRY5VbvBkXWZOq522RYUfZp_4EUyrd87GNW84bX--vl-gyFwDu5lnlSvjlHefIANPfgBOVaOyrnH6f_ocnViV1XDx1_tocTuep_fBdHY3SUfT4JUOIxEMQ_-z0HrJwS5NQmhieAgCAGyseRRqRpaCW28Qa6gAIpIoYsxSba2xyvA-utrvLavivYW6kauirXJ_UrKQhzGJOR16KtlTG5dBJ8vKrVXVSUrkNlS5DVUeQpXpeDQ_KP4LSyVxRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434707318</pqid></control><display><type>article</type><title>Urea Decomposition and Implication for NOx Reduction with Cu‐Zeolite and Vanadia‐Selective Catalytic Reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Yi-Jiang ; Wang, Fengshuang ; Tang, Weiyong ; Kakwani, Ramesh ; Hou, Yaling ; Feng, Gang</creator><creatorcontrib>Wu, Yi-Jiang ; Wang, Fengshuang ; Tang, Weiyong ; Kakwani, Ramesh ; Hou, Yaling ; Feng, Gang</creatorcontrib><description>Understanding urea decomposition is critical to achieve highly efficient selective catalytic reduction (SCR). The urea decomposition process in an exhaust pipe and in Cu‐zeolite and vanadia‐SCR (V‐SCR) was studied in engine test cells. The unconverted urea at the SCR inlet can be substantial at lower temperatures. HNCO and NH3 are two dominant products at the SCR inlet. Urea and HNCO continue to decompose in SCR catalysts, with a rate much faster than in the homogeneous stream. The HNCO hydrolysis process is extremely efficient in Cu‐zeolite SCR and the abundant NH3 from urea overdosing can improve the NOx conversion efficiency. While for V‐SCR, the HNCO hydrolysis reaction can become the rate‐limiting step (especially after aging), abundant urea at low temperatures impairs NOx reduction. HNCO and NH3 were found as two dominant decomposition products at the selective catalytic reduction (SCR) inlet, almost always at a molar ratio of 1:1. HNCO hydrolysis in the catalyst in Cu‐zeolite SCR is extremely efficient, whereas it can become the rate‐limiting step for V‐SCR, especially for aged catalysts. It is recommended to adopt different low‐temperature dosing strategies for different SCR catalysts.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.202000036</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Chemical reduction ; Decomposition ; Engine tests ; Exhaust pipes ; HNCO hydrolysis ; Hydrolysis ; Kinetics ; Low temperature ; Modeling ; Nitrogen oxides ; Selective catalytic reduction ; Urea decomposition ; Ureas ; Zeolites</subject><ispartof>Chemical engineering &amp; technology, 2020-09, Vol.43 (9), p.1758-1764</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.202000036$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.202000036$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wu, Yi-Jiang</creatorcontrib><creatorcontrib>Wang, Fengshuang</creatorcontrib><creatorcontrib>Tang, Weiyong</creatorcontrib><creatorcontrib>Kakwani, Ramesh</creatorcontrib><creatorcontrib>Hou, Yaling</creatorcontrib><creatorcontrib>Feng, Gang</creatorcontrib><title>Urea Decomposition and Implication for NOx Reduction with Cu‐Zeolite and Vanadia‐Selective Catalytic Reduction</title><title>Chemical engineering &amp; technology</title><description>Understanding urea decomposition is critical to achieve highly efficient selective catalytic reduction (SCR). The urea decomposition process in an exhaust pipe and in Cu‐zeolite and vanadia‐SCR (V‐SCR) was studied in engine test cells. The unconverted urea at the SCR inlet can be substantial at lower temperatures. HNCO and NH3 are two dominant products at the SCR inlet. Urea and HNCO continue to decompose in SCR catalysts, with a rate much faster than in the homogeneous stream. The HNCO hydrolysis process is extremely efficient in Cu‐zeolite SCR and the abundant NH3 from urea overdosing can improve the NOx conversion efficiency. While for V‐SCR, the HNCO hydrolysis reaction can become the rate‐limiting step (especially after aging), abundant urea at low temperatures impairs NOx reduction. HNCO and NH3 were found as two dominant decomposition products at the selective catalytic reduction (SCR) inlet, almost always at a molar ratio of 1:1. HNCO hydrolysis in the catalyst in Cu‐zeolite SCR is extremely efficient, whereas it can become the rate‐limiting step for V‐SCR, especially for aged catalysts. It is recommended to adopt different low‐temperature dosing strategies for different SCR catalysts.</description><subject>Ammonia</subject><subject>Chemical reduction</subject><subject>Decomposition</subject><subject>Engine tests</subject><subject>Exhaust pipes</subject><subject>HNCO hydrolysis</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Low temperature</subject><subject>Modeling</subject><subject>Nitrogen oxides</subject><subject>Selective catalytic reduction</subject><subject>Urea decomposition</subject><subject>Ureas</subject><subject>Zeolites</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EEqWwZW2JdYofidMsq1CgUkUlaFmwsVx7DK7SJORByY5P4Bv5EtwWldmM7tWZhy5Cl5QMKCHsWoNqBoww4ouLI9SjEaNBSFl0jHok4SSIIypO0VldrzxCveihalGBwjegi3VZ1K5xRY5VbvBkXWZOq522RYUfZp_4EUyrd87GNW84bX--vl-gyFwDu5lnlSvjlHefIANPfgBOVaOyrnH6f_ocnViV1XDx1_tocTuep_fBdHY3SUfT4JUOIxEMQ_-z0HrJwS5NQmhieAgCAGyseRRqRpaCW28Qa6gAIpIoYsxSba2xyvA-utrvLavivYW6kauirXJ_UrKQhzGJOR16KtlTG5dBJ8vKrVXVSUrkNlS5DVUeQpXpeDQ_KP4LSyVxRA</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Wu, Yi-Jiang</creator><creator>Wang, Fengshuang</creator><creator>Tang, Weiyong</creator><creator>Kakwani, Ramesh</creator><creator>Hou, Yaling</creator><creator>Feng, Gang</creator><general>Wiley Subscription Services, Inc</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202009</creationdate><title>Urea Decomposition and Implication for NOx Reduction with Cu‐Zeolite and Vanadia‐Selective Catalytic Reduction</title><author>Wu, Yi-Jiang ; Wang, Fengshuang ; Tang, Weiyong ; Kakwani, Ramesh ; Hou, Yaling ; Feng, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1856-840936ccb3efbd9019d34e6eeef7c354c20b63f6ee0fd16e0695522f1cffdfad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Chemical reduction</topic><topic>Decomposition</topic><topic>Engine tests</topic><topic>Exhaust pipes</topic><topic>HNCO hydrolysis</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Low temperature</topic><topic>Modeling</topic><topic>Nitrogen oxides</topic><topic>Selective catalytic reduction</topic><topic>Urea decomposition</topic><topic>Ureas</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yi-Jiang</creatorcontrib><creatorcontrib>Wang, Fengshuang</creatorcontrib><creatorcontrib>Tang, Weiyong</creatorcontrib><creatorcontrib>Kakwani, Ramesh</creatorcontrib><creatorcontrib>Hou, Yaling</creatorcontrib><creatorcontrib>Feng, Gang</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yi-Jiang</au><au>Wang, Fengshuang</au><au>Tang, Weiyong</au><au>Kakwani, Ramesh</au><au>Hou, Yaling</au><au>Feng, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urea Decomposition and Implication for NOx Reduction with Cu‐Zeolite and Vanadia‐Selective Catalytic Reduction</atitle><jtitle>Chemical engineering &amp; technology</jtitle><date>2020-09</date><risdate>2020</risdate><volume>43</volume><issue>9</issue><spage>1758</spage><epage>1764</epage><pages>1758-1764</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>Understanding urea decomposition is critical to achieve highly efficient selective catalytic reduction (SCR). The urea decomposition process in an exhaust pipe and in Cu‐zeolite and vanadia‐SCR (V‐SCR) was studied in engine test cells. The unconverted urea at the SCR inlet can be substantial at lower temperatures. HNCO and NH3 are two dominant products at the SCR inlet. Urea and HNCO continue to decompose in SCR catalysts, with a rate much faster than in the homogeneous stream. The HNCO hydrolysis process is extremely efficient in Cu‐zeolite SCR and the abundant NH3 from urea overdosing can improve the NOx conversion efficiency. While for V‐SCR, the HNCO hydrolysis reaction can become the rate‐limiting step (especially after aging), abundant urea at low temperatures impairs NOx reduction. HNCO and NH3 were found as two dominant decomposition products at the selective catalytic reduction (SCR) inlet, almost always at a molar ratio of 1:1. HNCO hydrolysis in the catalyst in Cu‐zeolite SCR is extremely efficient, whereas it can become the rate‐limiting step for V‐SCR, especially for aged catalysts. It is recommended to adopt different low‐temperature dosing strategies for different SCR catalysts.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.202000036</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2020-09, Vol.43 (9), p.1758-1764
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_journals_2434707318
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Chemical reduction
Decomposition
Engine tests
Exhaust pipes
HNCO hydrolysis
Hydrolysis
Kinetics
Low temperature
Modeling
Nitrogen oxides
Selective catalytic reduction
Urea decomposition
Ureas
Zeolites
title Urea Decomposition and Implication for NOx Reduction with Cu‐Zeolite and Vanadia‐Selective Catalytic Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urea%20Decomposition%20and%20Implication%20for%20NOx%20Reduction%20with%20Cu%E2%80%90Zeolite%20and%20Vanadia%E2%80%90Selective%20Catalytic%20Reduction&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Wu,%20Yi-Jiang&rft.date=2020-09&rft.volume=43&rft.issue=9&rft.spage=1758&rft.epage=1764&rft.pages=1758-1764&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.202000036&rft_dat=%3Cproquest_wiley%3E2434707318%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434707318&rft_id=info:pmid/&rfr_iscdi=true