Generalization of some Hardy-type integral inequality with negative parameter
In 2007, Bicheng Yang [3] presented a new Hardy-type integral inequality with a best constant factor. The aim of this work is to give a direct generalization of these inequalities obtained with negative parameter p < 0.
Gespeichert in:
Veröffentlicht in: | Bulletin of the Transilvania University of Brașov. Series III, Mathematics, informatics, physics Mathematics, informatics, physics, 2020, Vol.13(62) (1), p.69-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Bulletin of the Transilvania University of Brașov. Series III, Mathematics, informatics, physics |
container_volume | 13(62) |
creator | Benaissa, Bouharket Sarikaya, Mehmet Zeki |
description | In 2007, Bicheng Yang [3] presented a new Hardy-type integral inequality with a best constant factor. The aim of this work is to give a direct generalization of these inequalities obtained with negative parameter p < 0. |
doi_str_mv | 10.31926/but.mif.2020.13.62.1.6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434499428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434499428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2496-5913b75a4161eabf001672dee6d662e599adf5cb5b34d9340101951af2cf02c83</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-BgOeE3f2q92jFG0LFS8K3pZNMltTmo9uNkr89W6tOJd5D887Aw8ht0AzDpqp-3wIWV25jFFGM-CZYhlk6oJMGFUyZaDeL_-zhGsy6_s9jSPFggk6Ic8rbNDbQ_VtQ9U2SeuSvq0xWVtfjmkYO0yqJuAuIjHgcYhoGJOvKnwkDe5i6ROTznpbY0B_Q66cPfQ4-9tT8vb0-Lpcp9uX1Wb5sE0LJrRKpQaez6UVoABt7igFNWcloiqVYii1tqWTRS5zLkrNBQUKWoJ1rHCUFQs-JXfnu51vjwP2wezbwTfxpWGCC6G1YCdqfqYK3_a9R2c6X9XWjwao-dVnoj4T9ZmTPgPcKGbAKP4DcKxlgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434499428</pqid></control><display><type>article</type><title>Generalization of some Hardy-type integral inequality with negative parameter</title><source>Alma/SFX Local Collection</source><creator>Benaissa, Bouharket ; Sarikaya, Mehmet Zeki</creator><creatorcontrib>Benaissa, Bouharket ; Sarikaya, Mehmet Zeki ; University, D uzce, Turkey ; University of Tiaret, Algeria</creatorcontrib><description>In 2007, Bicheng Yang [3] presented a new Hardy-type integral inequality with a best constant factor. The aim of this work is to give a direct generalization of these inequalities obtained with negative parameter p < 0.</description><identifier>ISSN: 2065-2151</identifier><identifier>EISSN: 2065-216X</identifier><identifier>DOI: 10.31926/but.mif.2020.13.62.1.6</identifier><language>eng</language><publisher>Brasov: Transilvania University of Brasov</publisher><subject>Integrals ; Parameters</subject><ispartof>Bulletin of the Transilvania University of Brașov. Series III, Mathematics, informatics, physics, 2020, Vol.13(62) (1), p.69-76</ispartof><rights>Copyright Transilvania University of Brasov 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2496-5913b75a4161eabf001672dee6d662e599adf5cb5b34d9340101951af2cf02c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Benaissa, Bouharket</creatorcontrib><creatorcontrib>Sarikaya, Mehmet Zeki</creatorcontrib><creatorcontrib>University, D uzce, Turkey</creatorcontrib><creatorcontrib>University of Tiaret, Algeria</creatorcontrib><title>Generalization of some Hardy-type integral inequality with negative parameter</title><title>Bulletin of the Transilvania University of Brașov. Series III, Mathematics, informatics, physics</title><description>In 2007, Bicheng Yang [3] presented a new Hardy-type integral inequality with a best constant factor. The aim of this work is to give a direct generalization of these inequalities obtained with negative parameter p < 0.</description><subject>Integrals</subject><subject>Parameters</subject><issn>2065-2151</issn><issn>2065-216X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE1Lw0AQhhdRsNT-BgOeE3f2q92jFG0LFS8K3pZNMltTmo9uNkr89W6tOJd5D887Aw8ht0AzDpqp-3wIWV25jFFGM-CZYhlk6oJMGFUyZaDeL_-zhGsy6_s9jSPFggk6Ic8rbNDbQ_VtQ9U2SeuSvq0xWVtfjmkYO0yqJuAuIjHgcYhoGJOvKnwkDe5i6ROTznpbY0B_Q66cPfQ4-9tT8vb0-Lpcp9uX1Wb5sE0LJrRKpQaez6UVoABt7igFNWcloiqVYii1tqWTRS5zLkrNBQUKWoJ1rHCUFQs-JXfnu51vjwP2wezbwTfxpWGCC6G1YCdqfqYK3_a9R2c6X9XWjwao-dVnoj4T9ZmTPgPcKGbAKP4DcKxlgQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Benaissa, Bouharket</creator><creator>Sarikaya, Mehmet Zeki</creator><general>Transilvania University of Brasov</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>Generalization of some Hardy-type integral inequality with negative parameter</title><author>Benaissa, Bouharket ; Sarikaya, Mehmet Zeki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2496-5913b75a4161eabf001672dee6d662e599adf5cb5b34d9340101951af2cf02c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Integrals</topic><topic>Parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Benaissa, Bouharket</creatorcontrib><creatorcontrib>Sarikaya, Mehmet Zeki</creatorcontrib><creatorcontrib>University, D uzce, Turkey</creatorcontrib><creatorcontrib>University of Tiaret, Algeria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Transilvania University of Brașov. Series III, Mathematics, informatics, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benaissa, Bouharket</au><au>Sarikaya, Mehmet Zeki</au><aucorp>University, D uzce, Turkey</aucorp><aucorp>University of Tiaret, Algeria</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization of some Hardy-type integral inequality with negative parameter</atitle><jtitle>Bulletin of the Transilvania University of Brașov. Series III, Mathematics, informatics, physics</jtitle><date>2020</date><risdate>2020</risdate><volume>13(62)</volume><issue>1</issue><spage>69</spage><epage>76</epage><pages>69-76</pages><issn>2065-2151</issn><eissn>2065-216X</eissn><abstract>In 2007, Bicheng Yang [3] presented a new Hardy-type integral inequality with a best constant factor. The aim of this work is to give a direct generalization of these inequalities obtained with negative parameter p < 0.</abstract><cop>Brasov</cop><pub>Transilvania University of Brasov</pub><doi>10.31926/but.mif.2020.13.62.1.6</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2065-2151 |
ispartof | Bulletin of the Transilvania University of Brașov. Series III, Mathematics, informatics, physics, 2020, Vol.13(62) (1), p.69-76 |
issn | 2065-2151 2065-216X |
language | eng |
recordid | cdi_proquest_journals_2434499428 |
source | Alma/SFX Local Collection |
subjects | Integrals Parameters |
title | Generalization of some Hardy-type integral inequality with negative parameter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20of%20some%20Hardy-type%20integral%20inequality%20with%20negative%20parameter&rft.jtitle=Bulletin%20of%20the%20Transilvania%20University%20of%20Bra%C8%99ov.%20Series%20III,%20Mathematics,%20informatics,%20physics&rft.au=Benaissa,%20Bouharket&rft.aucorp=University,%20D%20uzce,%20Turkey&rft.date=2020&rft.volume=13(62)&rft.issue=1&rft.spage=69&rft.epage=76&rft.pages=69-76&rft.issn=2065-2151&rft.eissn=2065-216X&rft_id=info:doi/10.31926/but.mif.2020.13.62.1.6&rft_dat=%3Cproquest_cross%3E2434499428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434499428&rft_id=info:pmid/&rfr_iscdi=true |