Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting
Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a con...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2020-04, Vol.109, p.110519, Article 110519 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110519 |
container_title | Materials Science & Engineering C |
container_volume | 109 |
creator | Shimizu, Yu Fujibayashi, Shunsuke Yamaguchi, Seiji Mori, Shigeo Kitagaki, Hisashi Shimizu, Takayoshi Okuzu, Yaichiro Masamoto, Kazutaka Goto, Koji Otsuki, Bungo Kawai, Toshiyuki Morizane, Kazuaki Kawata, Tomotoshi Matsuda, Shuichi |
description | Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a control group comprising an untreated surface [SLM pure titanium (STi) and SLM Ti6Al4V (S64)] and a treated surface to induce the release of calcium (Ca) ions from SLM Ti6Al4V (Ca-S64). The surface-treated materials showed homogenous nanoscale network formation on the original micro-topographical surface and formed bone-like apatite on the surface in a simulated body fluid within 3 days. In vitro evaluation using MC3T3-E1 cells showed that the cells were viable on Sr-S64 surface, and Sr-S64 enhanced cell adhesion-related and osteogenic differentiation-related genes expression. In vivo rabbit tibia model, Sr-S64 provided significantly greater bone-bonding strength and bone-implant contact area than those in controls (STi and S64) in the early phase (2–4 weeks) after implantation; however, there was no statistical difference between Ca-S64 and controls. In conclusion, Sr solution and heat treatment was a safe and effective method to enhance early bone-bonding ability of S-64 by improving the surface characteristics and sustained delivery for Sr.
[Display omitted]
•Selective laser melting (SLM) is one of the additive manufacturing processes.•SLM Ti6Al4V samples with Sr ion release were developed via solution-heat treatment.•Sr treated surfaces showed micro/nano topography and super hydrophilicity.•Sr treated materials showed good cell adhesion and cell differentiation in vitro.•Sr treated materials showed outstanding early bone-bonding strength in vivo. |
doi_str_mv | 10.1016/j.msec.2019.110519 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434497922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493119330115</els_id><sourcerecordid>2434497922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-1b1af01158e289ebd1b5cdc00caf958bc1680f5154fc7f3f74d395d784a684123</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpaTZpX6CHIujZG40s2xL0koYmLQR6SXIVsjQqWmxpK9mBvH21OM2xJ8Hw_99oPkI-AdsDg_7ysJ8L2j1noPYArAP1huxADm1TJ_CW7JjishGqhTNyXsqBsV62A39PzlrOuVQw7Mj6LSRjl_CEFL1HuxSaPC1LTnEJ60ynZFyIv2mKdA42p8toYqJlzd5YpPehv5rEI7VpPqaIsba9GXOwZkFHx2dacMKNPpmCmc44LRX3gbzzZir48eW9IA833--vfzR3v25_Xl_dNVYosTQwgvEMoJNYv4ujg7GzzjJmjVedHC30kvkOOuHt4Fs_CNeqzg1SmF4K4O0F-bJxjzn9WbEs-pDWHOtKzUUrhBoUP6X4lqr3lZLR62MOs8nPGpg-mdYHfTKtT6b1ZrqWPr-g13FG91r5p7YGvm4BrAc-Bcy62IDRogu5OtEuhf_x_wIPgpBO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434497922</pqid></control><display><type>article</type><title>Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Shimizu, Yu ; Fujibayashi, Shunsuke ; Yamaguchi, Seiji ; Mori, Shigeo ; Kitagaki, Hisashi ; Shimizu, Takayoshi ; Okuzu, Yaichiro ; Masamoto, Kazutaka ; Goto, Koji ; Otsuki, Bungo ; Kawai, Toshiyuki ; Morizane, Kazuaki ; Kawata, Tomotoshi ; Matsuda, Shuichi</creator><creatorcontrib>Shimizu, Yu ; Fujibayashi, Shunsuke ; Yamaguchi, Seiji ; Mori, Shigeo ; Kitagaki, Hisashi ; Shimizu, Takayoshi ; Okuzu, Yaichiro ; Masamoto, Kazutaka ; Goto, Koji ; Otsuki, Bungo ; Kawai, Toshiyuki ; Morizane, Kazuaki ; Kawata, Tomotoshi ; Matsuda, Shuichi</creatorcontrib><description>Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a control group comprising an untreated surface [SLM pure titanium (STi) and SLM Ti6Al4V (S64)] and a treated surface to induce the release of calcium (Ca) ions from SLM Ti6Al4V (Ca-S64). The surface-treated materials showed homogenous nanoscale network formation on the original micro-topographical surface and formed bone-like apatite on the surface in a simulated body fluid within 3 days. In vitro evaluation using MC3T3-E1 cells showed that the cells were viable on Sr-S64 surface, and Sr-S64 enhanced cell adhesion-related and osteogenic differentiation-related genes expression. In vivo rabbit tibia model, Sr-S64 provided significantly greater bone-bonding strength and bone-implant contact area than those in controls (STi and S64) in the early phase (2–4 weeks) after implantation; however, there was no statistical difference between Ca-S64 and controls. In conclusion, Sr solution and heat treatment was a safe and effective method to enhance early bone-bonding ability of S-64 by improving the surface characteristics and sustained delivery for Sr.
[Display omitted]
•Selective laser melting (SLM) is one of the additive manufacturing processes.•SLM Ti6Al4V samples with Sr ion release were developed via solution-heat treatment.•Sr treated surfaces showed micro/nano topography and super hydrophilicity.•Sr treated materials showed good cell adhesion and cell differentiation in vitro.•Sr treated materials showed outstanding early bone-bonding strength in vivo.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2019.110519</identifier><identifier>PMID: 32228917</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Apatite ; Biomedical materials ; Body fluids ; Bonding strength ; Bone-implant interfaces ; Calcium ; Cell adhesion ; Cell adhesion & migration ; Cell differentiation ; Cell Line ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Computer simulation ; Controlled release ; Differentiation (biology) ; Gene expression ; Heat treatment ; Heat treatments ; Humans ; Implantation ; In vitro methods and tests ; Ions ; Laser beam melting ; Lasers ; Materials science ; Materials Testing ; Mechanical loading ; Melting ; Mice ; Nanoscale network ; Nanostructures - chemistry ; Network formation ; Osseointegration ; Selective laser melting ; Solution treatment ; Strontium ; Strontium - chemistry ; Strontium - pharmacology ; Surface Properties ; Surgical implants ; Sustained release ; Ti6Al4V ; Tibia ; Titanium ; Titanium - chemistry ; Titanium - pharmacology ; Titanium alloys ; Titanium base alloys ; Transplants & implants</subject><ispartof>Materials Science & Engineering C, 2020-04, Vol.109, p.110519, Article 110519</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-1b1af01158e289ebd1b5cdc00caf958bc1680f5154fc7f3f74d395d784a684123</citedby><cites>FETCH-LOGICAL-c494t-1b1af01158e289ebd1b5cdc00caf958bc1680f5154fc7f3f74d395d784a684123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0928493119330115$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32228917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimizu, Yu</creatorcontrib><creatorcontrib>Fujibayashi, Shunsuke</creatorcontrib><creatorcontrib>Yamaguchi, Seiji</creatorcontrib><creatorcontrib>Mori, Shigeo</creatorcontrib><creatorcontrib>Kitagaki, Hisashi</creatorcontrib><creatorcontrib>Shimizu, Takayoshi</creatorcontrib><creatorcontrib>Okuzu, Yaichiro</creatorcontrib><creatorcontrib>Masamoto, Kazutaka</creatorcontrib><creatorcontrib>Goto, Koji</creatorcontrib><creatorcontrib>Otsuki, Bungo</creatorcontrib><creatorcontrib>Kawai, Toshiyuki</creatorcontrib><creatorcontrib>Morizane, Kazuaki</creatorcontrib><creatorcontrib>Kawata, Tomotoshi</creatorcontrib><creatorcontrib>Matsuda, Shuichi</creatorcontrib><title>Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a control group comprising an untreated surface [SLM pure titanium (STi) and SLM Ti6Al4V (S64)] and a treated surface to induce the release of calcium (Ca) ions from SLM Ti6Al4V (Ca-S64). The surface-treated materials showed homogenous nanoscale network formation on the original micro-topographical surface and formed bone-like apatite on the surface in a simulated body fluid within 3 days. In vitro evaluation using MC3T3-E1 cells showed that the cells were viable on Sr-S64 surface, and Sr-S64 enhanced cell adhesion-related and osteogenic differentiation-related genes expression. In vivo rabbit tibia model, Sr-S64 provided significantly greater bone-bonding strength and bone-implant contact area than those in controls (STi and S64) in the early phase (2–4 weeks) after implantation; however, there was no statistical difference between Ca-S64 and controls. In conclusion, Sr solution and heat treatment was a safe and effective method to enhance early bone-bonding ability of S-64 by improving the surface characteristics and sustained delivery for Sr.
[Display omitted]
•Selective laser melting (SLM) is one of the additive manufacturing processes.•SLM Ti6Al4V samples with Sr ion release were developed via solution-heat treatment.•Sr treated surfaces showed micro/nano topography and super hydrophilicity.•Sr treated materials showed good cell adhesion and cell differentiation in vitro.•Sr treated materials showed outstanding early bone-bonding strength in vivo.</description><subject>Animals</subject><subject>Apatite</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bonding strength</subject><subject>Bone-implant interfaces</subject><subject>Calcium</subject><subject>Cell adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell differentiation</subject><subject>Cell Line</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Computer simulation</subject><subject>Controlled release</subject><subject>Differentiation (biology)</subject><subject>Gene expression</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>Humans</subject><subject>Implantation</subject><subject>In vitro methods and tests</subject><subject>Ions</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Mechanical loading</subject><subject>Melting</subject><subject>Mice</subject><subject>Nanoscale network</subject><subject>Nanostructures - chemistry</subject><subject>Network formation</subject><subject>Osseointegration</subject><subject>Selective laser melting</subject><subject>Solution treatment</subject><subject>Strontium</subject><subject>Strontium - chemistry</subject><subject>Strontium - pharmacology</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Sustained release</subject><subject>Ti6Al4V</subject><subject>Tibia</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium - pharmacology</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Transplants & implants</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFq3DAQhkVpaTZpX6CHIujZG40s2xL0koYmLQR6SXIVsjQqWmxpK9mBvH21OM2xJ8Hw_99oPkI-AdsDg_7ysJ8L2j1noPYArAP1huxADm1TJ_CW7JjishGqhTNyXsqBsV62A39PzlrOuVQw7Mj6LSRjl_CEFL1HuxSaPC1LTnEJ60ynZFyIv2mKdA42p8toYqJlzd5YpPehv5rEI7VpPqaIsba9GXOwZkFHx2dacMKNPpmCmc44LRX3gbzzZir48eW9IA833--vfzR3v25_Xl_dNVYosTQwgvEMoJNYv4ujg7GzzjJmjVedHC30kvkOOuHt4Fs_CNeqzg1SmF4K4O0F-bJxjzn9WbEs-pDWHOtKzUUrhBoUP6X4lqr3lZLR62MOs8nPGpg-mdYHfTKtT6b1ZrqWPr-g13FG91r5p7YGvm4BrAc-Bcy62IDRogu5OtEuhf_x_wIPgpBO</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Shimizu, Yu</creator><creator>Fujibayashi, Shunsuke</creator><creator>Yamaguchi, Seiji</creator><creator>Mori, Shigeo</creator><creator>Kitagaki, Hisashi</creator><creator>Shimizu, Takayoshi</creator><creator>Okuzu, Yaichiro</creator><creator>Masamoto, Kazutaka</creator><creator>Goto, Koji</creator><creator>Otsuki, Bungo</creator><creator>Kawai, Toshiyuki</creator><creator>Morizane, Kazuaki</creator><creator>Kawata, Tomotoshi</creator><creator>Matsuda, Shuichi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>202004</creationdate><title>Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting</title><author>Shimizu, Yu ; Fujibayashi, Shunsuke ; Yamaguchi, Seiji ; Mori, Shigeo ; Kitagaki, Hisashi ; Shimizu, Takayoshi ; Okuzu, Yaichiro ; Masamoto, Kazutaka ; Goto, Koji ; Otsuki, Bungo ; Kawai, Toshiyuki ; Morizane, Kazuaki ; Kawata, Tomotoshi ; Matsuda, Shuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-1b1af01158e289ebd1b5cdc00caf958bc1680f5154fc7f3f74d395d784a684123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Apatite</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bonding strength</topic><topic>Bone-implant interfaces</topic><topic>Calcium</topic><topic>Cell adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell differentiation</topic><topic>Cell Line</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Computer simulation</topic><topic>Controlled release</topic><topic>Differentiation (biology)</topic><topic>Gene expression</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>Humans</topic><topic>Implantation</topic><topic>In vitro methods and tests</topic><topic>Ions</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Mechanical loading</topic><topic>Melting</topic><topic>Mice</topic><topic>Nanoscale network</topic><topic>Nanostructures - chemistry</topic><topic>Network formation</topic><topic>Osseointegration</topic><topic>Selective laser melting</topic><topic>Solution treatment</topic><topic>Strontium</topic><topic>Strontium - chemistry</topic><topic>Strontium - pharmacology</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Sustained release</topic><topic>Ti6Al4V</topic><topic>Tibia</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium - pharmacology</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Transplants & implants</topic><toplevel>online_resources</toplevel><creatorcontrib>Shimizu, Yu</creatorcontrib><creatorcontrib>Fujibayashi, Shunsuke</creatorcontrib><creatorcontrib>Yamaguchi, Seiji</creatorcontrib><creatorcontrib>Mori, Shigeo</creatorcontrib><creatorcontrib>Kitagaki, Hisashi</creatorcontrib><creatorcontrib>Shimizu, Takayoshi</creatorcontrib><creatorcontrib>Okuzu, Yaichiro</creatorcontrib><creatorcontrib>Masamoto, Kazutaka</creatorcontrib><creatorcontrib>Goto, Koji</creatorcontrib><creatorcontrib>Otsuki, Bungo</creatorcontrib><creatorcontrib>Kawai, Toshiyuki</creatorcontrib><creatorcontrib>Morizane, Kazuaki</creatorcontrib><creatorcontrib>Kawata, Tomotoshi</creatorcontrib><creatorcontrib>Matsuda, Shuichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimizu, Yu</au><au>Fujibayashi, Shunsuke</au><au>Yamaguchi, Seiji</au><au>Mori, Shigeo</au><au>Kitagaki, Hisashi</au><au>Shimizu, Takayoshi</au><au>Okuzu, Yaichiro</au><au>Masamoto, Kazutaka</au><au>Goto, Koji</au><au>Otsuki, Bungo</au><au>Kawai, Toshiyuki</au><au>Morizane, Kazuaki</au><au>Kawata, Tomotoshi</au><au>Matsuda, Shuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2020-04</date><risdate>2020</risdate><volume>109</volume><spage>110519</spage><pages>110519-</pages><artnum>110519</artnum><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a control group comprising an untreated surface [SLM pure titanium (STi) and SLM Ti6Al4V (S64)] and a treated surface to induce the release of calcium (Ca) ions from SLM Ti6Al4V (Ca-S64). The surface-treated materials showed homogenous nanoscale network formation on the original micro-topographical surface and formed bone-like apatite on the surface in a simulated body fluid within 3 days. In vitro evaluation using MC3T3-E1 cells showed that the cells were viable on Sr-S64 surface, and Sr-S64 enhanced cell adhesion-related and osteogenic differentiation-related genes expression. In vivo rabbit tibia model, Sr-S64 provided significantly greater bone-bonding strength and bone-implant contact area than those in controls (STi and S64) in the early phase (2–4 weeks) after implantation; however, there was no statistical difference between Ca-S64 and controls. In conclusion, Sr solution and heat treatment was a safe and effective method to enhance early bone-bonding ability of S-64 by improving the surface characteristics and sustained delivery for Sr.
[Display omitted]
•Selective laser melting (SLM) is one of the additive manufacturing processes.•SLM Ti6Al4V samples with Sr ion release were developed via solution-heat treatment.•Sr treated surfaces showed micro/nano topography and super hydrophilicity.•Sr treated materials showed good cell adhesion and cell differentiation in vitro.•Sr treated materials showed outstanding early bone-bonding strength in vivo.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32228917</pmid><doi>10.1016/j.msec.2019.110519</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2020-04, Vol.109, p.110519, Article 110519 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_proquest_journals_2434497922 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Apatite Biomedical materials Body fluids Bonding strength Bone-implant interfaces Calcium Cell adhesion Cell adhesion & migration Cell differentiation Cell Line Coated Materials, Biocompatible - chemistry Coated Materials, Biocompatible - pharmacology Computer simulation Controlled release Differentiation (biology) Gene expression Heat treatment Heat treatments Humans Implantation In vitro methods and tests Ions Laser beam melting Lasers Materials science Materials Testing Mechanical loading Melting Mice Nanoscale network Nanostructures - chemistry Network formation Osseointegration Selective laser melting Solution treatment Strontium Strontium - chemistry Strontium - pharmacology Surface Properties Surgical implants Sustained release Ti6Al4V Tibia Titanium Titanium - chemistry Titanium - pharmacology Titanium alloys Titanium base alloys Transplants & implants |
title | Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactive%20effects%20of%20strontium%20loading%20on%20micro/nano%20surface%20Ti6Al4V%20components%20fabricated%20by%20selective%20laser%20melting&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Shimizu,%20Yu&rft.date=2020-04&rft.volume=109&rft.spage=110519&rft.pages=110519-&rft.artnum=110519&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2019.110519&rft_dat=%3Cproquest_cross%3E2434497922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434497922&rft_id=info:pmid/32228917&rft_els_id=S0928493119330115&rfr_iscdi=true |