Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting

Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2020-04, Vol.109, p.110519, Article 110519
Hauptverfasser: Shimizu, Yu, Fujibayashi, Shunsuke, Yamaguchi, Seiji, Mori, Shigeo, Kitagaki, Hisashi, Shimizu, Takayoshi, Okuzu, Yaichiro, Masamoto, Kazutaka, Goto, Koji, Otsuki, Bungo, Kawai, Toshiyuki, Morizane, Kazuaki, Kawata, Tomotoshi, Matsuda, Shuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110519
container_title Materials Science & Engineering C
container_volume 109
creator Shimizu, Yu
Fujibayashi, Shunsuke
Yamaguchi, Seiji
Mori, Shigeo
Kitagaki, Hisashi
Shimizu, Takayoshi
Okuzu, Yaichiro
Masamoto, Kazutaka
Goto, Koji
Otsuki, Bungo
Kawai, Toshiyuki
Morizane, Kazuaki
Kawata, Tomotoshi
Matsuda, Shuichi
description Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a control group comprising an untreated surface [SLM pure titanium (STi) and SLM Ti6Al4V (S64)] and a treated surface to induce the release of calcium (Ca) ions from SLM Ti6Al4V (Ca-S64). The surface-treated materials showed homogenous nanoscale network formation on the original micro-topographical surface and formed bone-like apatite on the surface in a simulated body fluid within 3 days. In vitro evaluation using MC3T3-E1 cells showed that the cells were viable on Sr-S64 surface, and Sr-S64 enhanced cell adhesion-related and osteogenic differentiation-related genes expression. In vivo rabbit tibia model, Sr-S64 provided significantly greater bone-bonding strength and bone-implant contact area than those in controls (STi and S64) in the early phase (2–4 weeks) after implantation; however, there was no statistical difference between Ca-S64 and controls. In conclusion, Sr solution and heat treatment was a safe and effective method to enhance early bone-bonding ability of S-64 by improving the surface characteristics and sustained delivery for Sr. [Display omitted] •Selective laser melting (SLM) is one of the additive manufacturing processes.•SLM Ti6Al4V samples with Sr ion release were developed via solution-heat treatment.•Sr treated surfaces showed micro/nano topography and super hydrophilicity.•Sr treated materials showed good cell adhesion and cell differentiation in vitro.•Sr treated materials showed outstanding early bone-bonding strength in vivo.
doi_str_mv 10.1016/j.msec.2019.110519
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434497922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493119330115</els_id><sourcerecordid>2434497922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-1b1af01158e289ebd1b5cdc00caf958bc1680f5154fc7f3f74d395d784a684123</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpaTZpX6CHIujZG40s2xL0koYmLQR6SXIVsjQqWmxpK9mBvH21OM2xJ8Hw_99oPkI-AdsDg_7ysJ8L2j1noPYArAP1huxADm1TJ_CW7JjishGqhTNyXsqBsV62A39PzlrOuVQw7Mj6LSRjl_CEFL1HuxSaPC1LTnEJ60ynZFyIv2mKdA42p8toYqJlzd5YpPehv5rEI7VpPqaIsba9GXOwZkFHx2dacMKNPpmCmc44LRX3gbzzZir48eW9IA833--vfzR3v25_Xl_dNVYosTQwgvEMoJNYv4ujg7GzzjJmjVedHC30kvkOOuHt4Fs_CNeqzg1SmF4K4O0F-bJxjzn9WbEs-pDWHOtKzUUrhBoUP6X4lqr3lZLR62MOs8nPGpg-mdYHfTKtT6b1ZrqWPr-g13FG91r5p7YGvm4BrAc-Bcy62IDRogu5OtEuhf_x_wIPgpBO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434497922</pqid></control><display><type>article</type><title>Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Shimizu, Yu ; Fujibayashi, Shunsuke ; Yamaguchi, Seiji ; Mori, Shigeo ; Kitagaki, Hisashi ; Shimizu, Takayoshi ; Okuzu, Yaichiro ; Masamoto, Kazutaka ; Goto, Koji ; Otsuki, Bungo ; Kawai, Toshiyuki ; Morizane, Kazuaki ; Kawata, Tomotoshi ; Matsuda, Shuichi</creator><creatorcontrib>Shimizu, Yu ; Fujibayashi, Shunsuke ; Yamaguchi, Seiji ; Mori, Shigeo ; Kitagaki, Hisashi ; Shimizu, Takayoshi ; Okuzu, Yaichiro ; Masamoto, Kazutaka ; Goto, Koji ; Otsuki, Bungo ; Kawai, Toshiyuki ; Morizane, Kazuaki ; Kawata, Tomotoshi ; Matsuda, Shuichi</creatorcontrib><description>Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a control group comprising an untreated surface [SLM pure titanium (STi) and SLM Ti6Al4V (S64)] and a treated surface to induce the release of calcium (Ca) ions from SLM Ti6Al4V (Ca-S64). The surface-treated materials showed homogenous nanoscale network formation on the original micro-topographical surface and formed bone-like apatite on the surface in a simulated body fluid within 3 days. In vitro evaluation using MC3T3-E1 cells showed that the cells were viable on Sr-S64 surface, and Sr-S64 enhanced cell adhesion-related and osteogenic differentiation-related genes expression. In vivo rabbit tibia model, Sr-S64 provided significantly greater bone-bonding strength and bone-implant contact area than those in controls (STi and S64) in the early phase (2–4 weeks) after implantation; however, there was no statistical difference between Ca-S64 and controls. In conclusion, Sr solution and heat treatment was a safe and effective method to enhance early bone-bonding ability of S-64 by improving the surface characteristics and sustained delivery for Sr. [Display omitted] •Selective laser melting (SLM) is one of the additive manufacturing processes.•SLM Ti6Al4V samples with Sr ion release were developed via solution-heat treatment.•Sr treated surfaces showed micro/nano topography and super hydrophilicity.•Sr treated materials showed good cell adhesion and cell differentiation in vitro.•Sr treated materials showed outstanding early bone-bonding strength in vivo.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2019.110519</identifier><identifier>PMID: 32228917</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Apatite ; Biomedical materials ; Body fluids ; Bonding strength ; Bone-implant interfaces ; Calcium ; Cell adhesion ; Cell adhesion &amp; migration ; Cell differentiation ; Cell Line ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Computer simulation ; Controlled release ; Differentiation (biology) ; Gene expression ; Heat treatment ; Heat treatments ; Humans ; Implantation ; In vitro methods and tests ; Ions ; Laser beam melting ; Lasers ; Materials science ; Materials Testing ; Mechanical loading ; Melting ; Mice ; Nanoscale network ; Nanostructures - chemistry ; Network formation ; Osseointegration ; Selective laser melting ; Solution treatment ; Strontium ; Strontium - chemistry ; Strontium - pharmacology ; Surface Properties ; Surgical implants ; Sustained release ; Ti6Al4V ; Tibia ; Titanium ; Titanium - chemistry ; Titanium - pharmacology ; Titanium alloys ; Titanium base alloys ; Transplants &amp; implants</subject><ispartof>Materials Science &amp; Engineering C, 2020-04, Vol.109, p.110519, Article 110519</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-1b1af01158e289ebd1b5cdc00caf958bc1680f5154fc7f3f74d395d784a684123</citedby><cites>FETCH-LOGICAL-c494t-1b1af01158e289ebd1b5cdc00caf958bc1680f5154fc7f3f74d395d784a684123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0928493119330115$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32228917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimizu, Yu</creatorcontrib><creatorcontrib>Fujibayashi, Shunsuke</creatorcontrib><creatorcontrib>Yamaguchi, Seiji</creatorcontrib><creatorcontrib>Mori, Shigeo</creatorcontrib><creatorcontrib>Kitagaki, Hisashi</creatorcontrib><creatorcontrib>Shimizu, Takayoshi</creatorcontrib><creatorcontrib>Okuzu, Yaichiro</creatorcontrib><creatorcontrib>Masamoto, Kazutaka</creatorcontrib><creatorcontrib>Goto, Koji</creatorcontrib><creatorcontrib>Otsuki, Bungo</creatorcontrib><creatorcontrib>Kawai, Toshiyuki</creatorcontrib><creatorcontrib>Morizane, Kazuaki</creatorcontrib><creatorcontrib>Kawata, Tomotoshi</creatorcontrib><creatorcontrib>Matsuda, Shuichi</creatorcontrib><title>Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a control group comprising an untreated surface [SLM pure titanium (STi) and SLM Ti6Al4V (S64)] and a treated surface to induce the release of calcium (Ca) ions from SLM Ti6Al4V (Ca-S64). The surface-treated materials showed homogenous nanoscale network formation on the original micro-topographical surface and formed bone-like apatite on the surface in a simulated body fluid within 3 days. In vitro evaluation using MC3T3-E1 cells showed that the cells were viable on Sr-S64 surface, and Sr-S64 enhanced cell adhesion-related and osteogenic differentiation-related genes expression. In vivo rabbit tibia model, Sr-S64 provided significantly greater bone-bonding strength and bone-implant contact area than those in controls (STi and S64) in the early phase (2–4 weeks) after implantation; however, there was no statistical difference between Ca-S64 and controls. In conclusion, Sr solution and heat treatment was a safe and effective method to enhance early bone-bonding ability of S-64 by improving the surface characteristics and sustained delivery for Sr. [Display omitted] •Selective laser melting (SLM) is one of the additive manufacturing processes.•SLM Ti6Al4V samples with Sr ion release were developed via solution-heat treatment.•Sr treated surfaces showed micro/nano topography and super hydrophilicity.•Sr treated materials showed good cell adhesion and cell differentiation in vitro.•Sr treated materials showed outstanding early bone-bonding strength in vivo.</description><subject>Animals</subject><subject>Apatite</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bonding strength</subject><subject>Bone-implant interfaces</subject><subject>Calcium</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell differentiation</subject><subject>Cell Line</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Computer simulation</subject><subject>Controlled release</subject><subject>Differentiation (biology)</subject><subject>Gene expression</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>Humans</subject><subject>Implantation</subject><subject>In vitro methods and tests</subject><subject>Ions</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Mechanical loading</subject><subject>Melting</subject><subject>Mice</subject><subject>Nanoscale network</subject><subject>Nanostructures - chemistry</subject><subject>Network formation</subject><subject>Osseointegration</subject><subject>Selective laser melting</subject><subject>Solution treatment</subject><subject>Strontium</subject><subject>Strontium - chemistry</subject><subject>Strontium - pharmacology</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Sustained release</subject><subject>Ti6Al4V</subject><subject>Tibia</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium - pharmacology</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Transplants &amp; implants</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFq3DAQhkVpaTZpX6CHIujZG40s2xL0koYmLQR6SXIVsjQqWmxpK9mBvH21OM2xJ8Hw_99oPkI-AdsDg_7ysJ8L2j1noPYArAP1huxADm1TJ_CW7JjishGqhTNyXsqBsV62A39PzlrOuVQw7Mj6LSRjl_CEFL1HuxSaPC1LTnEJ60ynZFyIv2mKdA42p8toYqJlzd5YpPehv5rEI7VpPqaIsba9GXOwZkFHx2dacMKNPpmCmc44LRX3gbzzZir48eW9IA833--vfzR3v25_Xl_dNVYosTQwgvEMoJNYv4ujg7GzzjJmjVedHC30kvkOOuHt4Fs_CNeqzg1SmF4K4O0F-bJxjzn9WbEs-pDWHOtKzUUrhBoUP6X4lqr3lZLR62MOs8nPGpg-mdYHfTKtT6b1ZrqWPr-g13FG91r5p7YGvm4BrAc-Bcy62IDRogu5OtEuhf_x_wIPgpBO</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Shimizu, Yu</creator><creator>Fujibayashi, Shunsuke</creator><creator>Yamaguchi, Seiji</creator><creator>Mori, Shigeo</creator><creator>Kitagaki, Hisashi</creator><creator>Shimizu, Takayoshi</creator><creator>Okuzu, Yaichiro</creator><creator>Masamoto, Kazutaka</creator><creator>Goto, Koji</creator><creator>Otsuki, Bungo</creator><creator>Kawai, Toshiyuki</creator><creator>Morizane, Kazuaki</creator><creator>Kawata, Tomotoshi</creator><creator>Matsuda, Shuichi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>202004</creationdate><title>Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting</title><author>Shimizu, Yu ; Fujibayashi, Shunsuke ; Yamaguchi, Seiji ; Mori, Shigeo ; Kitagaki, Hisashi ; Shimizu, Takayoshi ; Okuzu, Yaichiro ; Masamoto, Kazutaka ; Goto, Koji ; Otsuki, Bungo ; Kawai, Toshiyuki ; Morizane, Kazuaki ; Kawata, Tomotoshi ; Matsuda, Shuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-1b1af01158e289ebd1b5cdc00caf958bc1680f5154fc7f3f74d395d784a684123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Apatite</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bonding strength</topic><topic>Bone-implant interfaces</topic><topic>Calcium</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell differentiation</topic><topic>Cell Line</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Computer simulation</topic><topic>Controlled release</topic><topic>Differentiation (biology)</topic><topic>Gene expression</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>Humans</topic><topic>Implantation</topic><topic>In vitro methods and tests</topic><topic>Ions</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Mechanical loading</topic><topic>Melting</topic><topic>Mice</topic><topic>Nanoscale network</topic><topic>Nanostructures - chemistry</topic><topic>Network formation</topic><topic>Osseointegration</topic><topic>Selective laser melting</topic><topic>Solution treatment</topic><topic>Strontium</topic><topic>Strontium - chemistry</topic><topic>Strontium - pharmacology</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Sustained release</topic><topic>Ti6Al4V</topic><topic>Tibia</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium - pharmacology</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Transplants &amp; implants</topic><toplevel>online_resources</toplevel><creatorcontrib>Shimizu, Yu</creatorcontrib><creatorcontrib>Fujibayashi, Shunsuke</creatorcontrib><creatorcontrib>Yamaguchi, Seiji</creatorcontrib><creatorcontrib>Mori, Shigeo</creatorcontrib><creatorcontrib>Kitagaki, Hisashi</creatorcontrib><creatorcontrib>Shimizu, Takayoshi</creatorcontrib><creatorcontrib>Okuzu, Yaichiro</creatorcontrib><creatorcontrib>Masamoto, Kazutaka</creatorcontrib><creatorcontrib>Goto, Koji</creatorcontrib><creatorcontrib>Otsuki, Bungo</creatorcontrib><creatorcontrib>Kawai, Toshiyuki</creatorcontrib><creatorcontrib>Morizane, Kazuaki</creatorcontrib><creatorcontrib>Kawata, Tomotoshi</creatorcontrib><creatorcontrib>Matsuda, Shuichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimizu, Yu</au><au>Fujibayashi, Shunsuke</au><au>Yamaguchi, Seiji</au><au>Mori, Shigeo</au><au>Kitagaki, Hisashi</au><au>Shimizu, Takayoshi</au><au>Okuzu, Yaichiro</au><au>Masamoto, Kazutaka</au><au>Goto, Koji</au><au>Otsuki, Bungo</au><au>Kawai, Toshiyuki</au><au>Morizane, Kazuaki</au><au>Kawata, Tomotoshi</au><au>Matsuda, Shuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2020-04</date><risdate>2020</risdate><volume>109</volume><spage>110519</spage><pages>110519-</pages><artnum>110519</artnum><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Selective laser melting (SLM) titanium alloys require surface modification to achieve early bone-bonding. This study investigated the effects of solution and heat treatment to induce the sustained release of strontium (Sr) ions from SLM Ti6Al4V implants (Sr-S64). The results were compared with a control group comprising an untreated surface [SLM pure titanium (STi) and SLM Ti6Al4V (S64)] and a treated surface to induce the release of calcium (Ca) ions from SLM Ti6Al4V (Ca-S64). The surface-treated materials showed homogenous nanoscale network formation on the original micro-topographical surface and formed bone-like apatite on the surface in a simulated body fluid within 3 days. In vitro evaluation using MC3T3-E1 cells showed that the cells were viable on Sr-S64 surface, and Sr-S64 enhanced cell adhesion-related and osteogenic differentiation-related genes expression. In vivo rabbit tibia model, Sr-S64 provided significantly greater bone-bonding strength and bone-implant contact area than those in controls (STi and S64) in the early phase (2–4 weeks) after implantation; however, there was no statistical difference between Ca-S64 and controls. In conclusion, Sr solution and heat treatment was a safe and effective method to enhance early bone-bonding ability of S-64 by improving the surface characteristics and sustained delivery for Sr. [Display omitted] •Selective laser melting (SLM) is one of the additive manufacturing processes.•SLM Ti6Al4V samples with Sr ion release were developed via solution-heat treatment.•Sr treated surfaces showed micro/nano topography and super hydrophilicity.•Sr treated materials showed good cell adhesion and cell differentiation in vitro.•Sr treated materials showed outstanding early bone-bonding strength in vivo.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32228917</pmid><doi>10.1016/j.msec.2019.110519</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2020-04, Vol.109, p.110519, Article 110519
issn 0928-4931
1873-0191
language eng
recordid cdi_proquest_journals_2434497922
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Apatite
Biomedical materials
Body fluids
Bonding strength
Bone-implant interfaces
Calcium
Cell adhesion
Cell adhesion & migration
Cell differentiation
Cell Line
Coated Materials, Biocompatible - chemistry
Coated Materials, Biocompatible - pharmacology
Computer simulation
Controlled release
Differentiation (biology)
Gene expression
Heat treatment
Heat treatments
Humans
Implantation
In vitro methods and tests
Ions
Laser beam melting
Lasers
Materials science
Materials Testing
Mechanical loading
Melting
Mice
Nanoscale network
Nanostructures - chemistry
Network formation
Osseointegration
Selective laser melting
Solution treatment
Strontium
Strontium - chemistry
Strontium - pharmacology
Surface Properties
Surgical implants
Sustained release
Ti6Al4V
Tibia
Titanium
Titanium - chemistry
Titanium - pharmacology
Titanium alloys
Titanium base alloys
Transplants & implants
title Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactive%20effects%20of%20strontium%20loading%20on%20micro/nano%20surface%20Ti6Al4V%20components%20fabricated%20by%20selective%20laser%20melting&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Shimizu,%20Yu&rft.date=2020-04&rft.volume=109&rft.spage=110519&rft.pages=110519-&rft.artnum=110519&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2019.110519&rft_dat=%3Cproquest_cross%3E2434497922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434497922&rft_id=info:pmid/32228917&rft_els_id=S0928493119330115&rfr_iscdi=true