pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid
Polyelectrolyte layer-by-layer (LbL) films that disintegrate under physiological conditions are intensively studied as coatings to enable the release of bioactive components. Herein, we report on the interactions and pH-stability of LbL films composed of chitosan (CH) or N-(2-hydroxypropyl)-3-trimet...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2020-04, Vol.109, p.110493, Article 110493 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110493 |
container_title | Materials Science & Engineering C |
container_volume | 109 |
creator | Kumorek, Marta Minisy, Islam M. Krunclová, Tereza Voršiláková, Marta Venclíková, Kristýna Chánová, Eliška Mázl Janoušková, Olga Kubies, Dana |
description | Polyelectrolyte layer-by-layer (LbL) films that disintegrate under physiological conditions are intensively studied as coatings to enable the release of bioactive components. Herein, we report on the interactions and pH-stability of LbL films composed of chitosan (CH) or N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (CMCH) and tannic acid (TA), employed to guarantee the film disintegration. The self-assembly of TA with CH and CMCH at pH 5 and with CMCH at pH 7.4 were proven by turbidimetric, surface plasmon resonance and UV–Vis analyses. The LbL films exhibited pH-dependent properties; CMCH/TA films prepared at pH 7.4 showed exponential growth as well as a higher layer thickness and surface roughness, whereas films prepared at pH 5 grew linearly and were smoother. The film stability varied with the pH used for film assembly; CH/TA films assembled at pH 5 were unstable at pH 8.5, whereas CMCH/TA films assembled at pH 7.4 disintegrated at pH 4. All films exhibited a similar disassembly at pH 7.4. The coatings reduced the adhesion of E. coli and S. aureus by approximately 80%. CMCH-terminated CMCH/TA films were more resistant to bacterial adhesion, whereas CH-terminated CH/TA films demonstrated stronger killing activity. The prepared pH-triggered decomposable LbL films could be used as degradable coatings that allow the release of therapeutics for biomedical applications and also prevent bacterial adhesion.
[Display omitted]
•Tannic acid (TA) formed LbL films with chitosan (CH) or quaternized chitosan (CMCH).•(CMCH/TA)n films can be formed at physiological pH convenient for protein loading.•pHs of the film assembly and degradation solutions determined film disintegration.•TA provided a gradual LbL film disintegration under physiological conditions.•Both (CMCH/TA)n and (CH/TA)n coatings exhibited antiadhesive bacterial properties. |
doi_str_mv | 10.1016/j.msec.2019.110493 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434497287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493119303339</els_id><sourcerecordid>2434497287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-a2e501227a8d314cf56b9c435e8d375f91e911fd9faab9717aa25b926857ed9e3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpaTabfIEeiqBnb_XHXlvQSwlJUwj00p7FWBpRLbblarSBfPtqs2mPOQihx3tvRj_GPkixk0LuPx92M6HbKSHNTkrRGv2GbeTQ66Yq8i3bCKOGpsrygl0SHYTYD7pX79mFVkoNptMbltb7JiOtaaH4iBwWX0-JI7iCOcLE15xWzCUi8RQ44RQaIMJ5nNDz-TiVOMETZh7iNBMfgaqcFu5-x5IIlufGAssSHQcX_RV7F2AivH65t-zX3e3Pm_vm4ce37zdfHxqnh7Y0oLATUqkeBq9l60K3H41rdYf13XfBSDRSBm8CwGh62QOobjRqP3Q9eoN6yz6de-v-f45IxR7SMS91pFWtblvTqwpqy9TZ5XIiyhjsmuMM-clKYU-M7cGeGNsTY3tmXEMfX6qP44z-f-Qf1Gr4cjZg_eBjxGzJRVwc-pjRFetTfK3_L7-ajog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434497287</pqid></control><display><type>article</type><title>pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kumorek, Marta ; Minisy, Islam M. ; Krunclová, Tereza ; Voršiláková, Marta ; Venclíková, Kristýna ; Chánová, Eliška Mázl ; Janoušková, Olga ; Kubies, Dana</creator><creatorcontrib>Kumorek, Marta ; Minisy, Islam M. ; Krunclová, Tereza ; Voršiláková, Marta ; Venclíková, Kristýna ; Chánová, Eliška Mázl ; Janoušková, Olga ; Kubies, Dana</creatorcontrib><description>Polyelectrolyte layer-by-layer (LbL) films that disintegrate under physiological conditions are intensively studied as coatings to enable the release of bioactive components. Herein, we report on the interactions and pH-stability of LbL films composed of chitosan (CH) or N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (CMCH) and tannic acid (TA), employed to guarantee the film disintegration. The self-assembly of TA with CH and CMCH at pH 5 and with CMCH at pH 7.4 were proven by turbidimetric, surface plasmon resonance and UV–Vis analyses. The LbL films exhibited pH-dependent properties; CMCH/TA films prepared at pH 7.4 showed exponential growth as well as a higher layer thickness and surface roughness, whereas films prepared at pH 5 grew linearly and were smoother. The film stability varied with the pH used for film assembly; CH/TA films assembled at pH 5 were unstable at pH 8.5, whereas CMCH/TA films assembled at pH 7.4 disintegrated at pH 4. All films exhibited a similar disassembly at pH 7.4. The coatings reduced the adhesion of E. coli and S. aureus by approximately 80%. CMCH-terminated CMCH/TA films were more resistant to bacterial adhesion, whereas CH-terminated CH/TA films demonstrated stronger killing activity. The prepared pH-triggered decomposable LbL films could be used as degradable coatings that allow the release of therapeutics for biomedical applications and also prevent bacterial adhesion.
[Display omitted]
•Tannic acid (TA) formed LbL films with chitosan (CH) or quaternized chitosan (CMCH).•(CMCH/TA)n films can be formed at physiological pH convenient for protein loading.•pHs of the film assembly and degradation solutions determined film disintegration.•TA provided a gradual LbL film disintegration under physiological conditions.•Both (CMCH/TA)n and (CH/TA)n coatings exhibited antiadhesive bacterial properties.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2019.110493</identifier><identifier>PMID: 32228953</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adhesion ; Anti-Bacterial Agents - pharmacology ; Antibacterial properties ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Biomedical materials ; Chitosan ; Chitosan - chemistry ; Coatings ; Disintegration ; E coli ; Escherichia coli - drug effects ; Film stability ; Hydrogen-Ion Concentration ; Layer-by-layer ; Materials science ; Motion Pictures ; Multilayers ; pH effects ; pH responsive films ; Polyelectrolytes ; Self-assembled multilayers ; Self-assembly ; Stability ; Staphylococcus aureus - drug effects ; Surface plasmon resonance ; Surface roughness ; Tannic acid ; Tannins - chemistry ; Thickness</subject><ispartof>Materials Science & Engineering C, 2020-04, Vol.109, p.110493, Article 110493</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-a2e501227a8d314cf56b9c435e8d375f91e911fd9faab9717aa25b926857ed9e3</citedby><cites>FETCH-LOGICAL-c384t-a2e501227a8d314cf56b9c435e8d375f91e911fd9faab9717aa25b926857ed9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0928493119303339$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32228953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumorek, Marta</creatorcontrib><creatorcontrib>Minisy, Islam M.</creatorcontrib><creatorcontrib>Krunclová, Tereza</creatorcontrib><creatorcontrib>Voršiláková, Marta</creatorcontrib><creatorcontrib>Venclíková, Kristýna</creatorcontrib><creatorcontrib>Chánová, Eliška Mázl</creatorcontrib><creatorcontrib>Janoušková, Olga</creatorcontrib><creatorcontrib>Kubies, Dana</creatorcontrib><title>pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Polyelectrolyte layer-by-layer (LbL) films that disintegrate under physiological conditions are intensively studied as coatings to enable the release of bioactive components. Herein, we report on the interactions and pH-stability of LbL films composed of chitosan (CH) or N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (CMCH) and tannic acid (TA), employed to guarantee the film disintegration. The self-assembly of TA with CH and CMCH at pH 5 and with CMCH at pH 7.4 were proven by turbidimetric, surface plasmon resonance and UV–Vis analyses. The LbL films exhibited pH-dependent properties; CMCH/TA films prepared at pH 7.4 showed exponential growth as well as a higher layer thickness and surface roughness, whereas films prepared at pH 5 grew linearly and were smoother. The film stability varied with the pH used for film assembly; CH/TA films assembled at pH 5 were unstable at pH 8.5, whereas CMCH/TA films assembled at pH 7.4 disintegrated at pH 4. All films exhibited a similar disassembly at pH 7.4. The coatings reduced the adhesion of E. coli and S. aureus by approximately 80%. CMCH-terminated CMCH/TA films were more resistant to bacterial adhesion, whereas CH-terminated CH/TA films demonstrated stronger killing activity. The prepared pH-triggered decomposable LbL films could be used as degradable coatings that allow the release of therapeutics for biomedical applications and also prevent bacterial adhesion.
[Display omitted]
•Tannic acid (TA) formed LbL films with chitosan (CH) or quaternized chitosan (CMCH).•(CMCH/TA)n films can be formed at physiological pH convenient for protein loading.•pHs of the film assembly and degradation solutions determined film disintegration.•TA provided a gradual LbL film disintegration under physiological conditions.•Both (CMCH/TA)n and (CH/TA)n coatings exhibited antiadhesive bacterial properties.</description><subject>Adhesion</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial properties</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biomedical materials</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Coatings</subject><subject>Disintegration</subject><subject>E coli</subject><subject>Escherichia coli - drug effects</subject><subject>Film stability</subject><subject>Hydrogen-Ion Concentration</subject><subject>Layer-by-layer</subject><subject>Materials science</subject><subject>Motion Pictures</subject><subject>Multilayers</subject><subject>pH effects</subject><subject>pH responsive films</subject><subject>Polyelectrolytes</subject><subject>Self-assembled multilayers</subject><subject>Self-assembly</subject><subject>Stability</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Surface plasmon resonance</subject><subject>Surface roughness</subject><subject>Tannic acid</subject><subject>Tannins - chemistry</subject><subject>Thickness</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9r3DAQxUVpaTabfIEeiqBnb_XHXlvQSwlJUwj00p7FWBpRLbblarSBfPtqs2mPOQihx3tvRj_GPkixk0LuPx92M6HbKSHNTkrRGv2GbeTQ66Yq8i3bCKOGpsrygl0SHYTYD7pX79mFVkoNptMbltb7JiOtaaH4iBwWX0-JI7iCOcLE15xWzCUi8RQ44RQaIMJ5nNDz-TiVOMETZh7iNBMfgaqcFu5-x5IIlufGAssSHQcX_RV7F2AivH65t-zX3e3Pm_vm4ce37zdfHxqnh7Y0oLATUqkeBq9l60K3H41rdYf13XfBSDRSBm8CwGh62QOobjRqP3Q9eoN6yz6de-v-f45IxR7SMS91pFWtblvTqwpqy9TZ5XIiyhjsmuMM-clKYU-M7cGeGNsTY3tmXEMfX6qP44z-f-Qf1Gr4cjZg_eBjxGzJRVwc-pjRFetTfK3_L7-ajog</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Kumorek, Marta</creator><creator>Minisy, Islam M.</creator><creator>Krunclová, Tereza</creator><creator>Voršiláková, Marta</creator><creator>Venclíková, Kristýna</creator><creator>Chánová, Eliška Mázl</creator><creator>Janoušková, Olga</creator><creator>Kubies, Dana</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>202004</creationdate><title>pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid</title><author>Kumorek, Marta ; Minisy, Islam M. ; Krunclová, Tereza ; Voršiláková, Marta ; Venclíková, Kristýna ; Chánová, Eliška Mázl ; Janoušková, Olga ; Kubies, Dana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-a2e501227a8d314cf56b9c435e8d375f91e911fd9faab9717aa25b926857ed9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesion</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial properties</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biomedical materials</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Coatings</topic><topic>Disintegration</topic><topic>E coli</topic><topic>Escherichia coli - drug effects</topic><topic>Film stability</topic><topic>Hydrogen-Ion Concentration</topic><topic>Layer-by-layer</topic><topic>Materials science</topic><topic>Motion Pictures</topic><topic>Multilayers</topic><topic>pH effects</topic><topic>pH responsive films</topic><topic>Polyelectrolytes</topic><topic>Self-assembled multilayers</topic><topic>Self-assembly</topic><topic>Stability</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Surface plasmon resonance</topic><topic>Surface roughness</topic><topic>Tannic acid</topic><topic>Tannins - chemistry</topic><topic>Thickness</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumorek, Marta</creatorcontrib><creatorcontrib>Minisy, Islam M.</creatorcontrib><creatorcontrib>Krunclová, Tereza</creatorcontrib><creatorcontrib>Voršiláková, Marta</creatorcontrib><creatorcontrib>Venclíková, Kristýna</creatorcontrib><creatorcontrib>Chánová, Eliška Mázl</creatorcontrib><creatorcontrib>Janoušková, Olga</creatorcontrib><creatorcontrib>Kubies, Dana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumorek, Marta</au><au>Minisy, Islam M.</au><au>Krunclová, Tereza</au><au>Voršiláková, Marta</au><au>Venclíková, Kristýna</au><au>Chánová, Eliška Mázl</au><au>Janoušková, Olga</au><au>Kubies, Dana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2020-04</date><risdate>2020</risdate><volume>109</volume><spage>110493</spage><pages>110493-</pages><artnum>110493</artnum><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Polyelectrolyte layer-by-layer (LbL) films that disintegrate under physiological conditions are intensively studied as coatings to enable the release of bioactive components. Herein, we report on the interactions and pH-stability of LbL films composed of chitosan (CH) or N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (CMCH) and tannic acid (TA), employed to guarantee the film disintegration. The self-assembly of TA with CH and CMCH at pH 5 and with CMCH at pH 7.4 were proven by turbidimetric, surface plasmon resonance and UV–Vis analyses. The LbL films exhibited pH-dependent properties; CMCH/TA films prepared at pH 7.4 showed exponential growth as well as a higher layer thickness and surface roughness, whereas films prepared at pH 5 grew linearly and were smoother. The film stability varied with the pH used for film assembly; CH/TA films assembled at pH 5 were unstable at pH 8.5, whereas CMCH/TA films assembled at pH 7.4 disintegrated at pH 4. All films exhibited a similar disassembly at pH 7.4. The coatings reduced the adhesion of E. coli and S. aureus by approximately 80%. CMCH-terminated CMCH/TA films were more resistant to bacterial adhesion, whereas CH-terminated CH/TA films demonstrated stronger killing activity. The prepared pH-triggered decomposable LbL films could be used as degradable coatings that allow the release of therapeutics for biomedical applications and also prevent bacterial adhesion.
[Display omitted]
•Tannic acid (TA) formed LbL films with chitosan (CH) or quaternized chitosan (CMCH).•(CMCH/TA)n films can be formed at physiological pH convenient for protein loading.•pHs of the film assembly and degradation solutions determined film disintegration.•TA provided a gradual LbL film disintegration under physiological conditions.•Both (CMCH/TA)n and (CH/TA)n coatings exhibited antiadhesive bacterial properties.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32228953</pmid><doi>10.1016/j.msec.2019.110493</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2020-04, Vol.109, p.110493, Article 110493 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_proquest_journals_2434497287 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adhesion Anti-Bacterial Agents - pharmacology Antibacterial properties Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Biomedical materials Chitosan Chitosan - chemistry Coatings Disintegration E coli Escherichia coli - drug effects Film stability Hydrogen-Ion Concentration Layer-by-layer Materials science Motion Pictures Multilayers pH effects pH responsive films Polyelectrolytes Self-assembled multilayers Self-assembly Stability Staphylococcus aureus - drug effects Surface plasmon resonance Surface roughness Tannic acid Tannins - chemistry Thickness |
title | pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH-responsive%20and%20antibacterial%20properties%20of%20self-assembled%20multilayer%20films%20based%20on%20chitosan%20and%20tannic%20acid&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Kumorek,%20Marta&rft.date=2020-04&rft.volume=109&rft.spage=110493&rft.pages=110493-&rft.artnum=110493&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2019.110493&rft_dat=%3Cproquest_cross%3E2434497287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434497287&rft_id=info:pmid/32228953&rft_els_id=S0928493119303339&rfr_iscdi=true |