Neurogenetic approach for real-time damping of low-frequency oscillations in electric networks
•Proposed intelligent neuro-genetic approaches damp out LFO in electric networks.•Standard statistical indices validate the efficacy of the proposed technique.•Results comparison confirmed the superiority of the proposed approach over others. Low-frequency oscillations should be dealt with extreme c...
Gespeichert in:
Veröffentlicht in: | Computers & electrical engineering 2020-05, Vol.83, p.106600-14, Article 106600 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 106600 |
container_title | Computers & electrical engineering |
container_volume | 83 |
creator | Shahriar, Mohammad Shoaib Shafiullah, Md Rana, Md Juel Ali, Amjad Ahmed, Ashik Rahman, Syed Masiur |
description | •Proposed intelligent neuro-genetic approaches damp out LFO in electric networks.•Standard statistical indices validate the efficacy of the proposed technique.•Results comparison confirmed the superiority of the proposed approach over others.
Low-frequency oscillations should be dealt with extreme care for secure electric networks. This paper tunes the critical parameters of power system stabilizers in three different electric networks in real-time, employing the neurogenetic approach to damp out the low-frequency oscillations. The first network is a single machine infinite bus power system equipped with a power system stabilizer. Besides, the second and third networks are coordinated with second-generation flexible alternating current transmission system devices, namely a unified power flow controller and static synchronous compensator in coordination with power system stabilizers, respectively. The investigation of eigenvalue and minimum damping ratio analyses for different loading conditions proves the efficiency of the proposed approach. Additionally, the time-domain simulation comparison shows the superiority of the proposed approach over the conventional method. Besides, the satisfactory values of the statistical performance measures give confidence to the proposed approach in predicting power system stabilizer parameters and thus mitigating the low-frequency oscillations in real-time. |
doi_str_mv | 10.1016/j.compeleceng.2020.106600 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434468971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790619322487</els_id><sourcerecordid>2434468971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-54eb241587c026a841d1cd7ff42466e119fb5a9132e049d1c789d98dda66dad23</originalsourceid><addsrcrecordid>eNqNkE9PxCAQxYnRxHX1O2A8dwVKaTmajf8Soxe9SliYrtS2VOi62W8vTT149DRhmHnz3g-hS0pWlFBx3ayM7wZowUC_XTHCpr4QhByhBa1KmZGyKI7RghBeZKUk4hSdxdiQ9Ba0WqD3Z9gFv4UeRmewHobgtfnAtQ84gG6z0XWAre4G12-xr3Hr91kd4GsHvTlgH41rWz0630fsejz5GEMSSnJ7Hz7jOTqpdRvh4rcu0dvd7ev6IXt6uX9c3zxlJudyzAoOG8ZpUZWGMKErTi01tqxrzrgQQKmsN4WWNGdAuEx_ZSWtrKzVQlhtWb5EV7Nu8p-8xVE1fhf6dFIxnnMuKlnSNCXnKRN8jAFqNQTX6XBQlKgJp2rUH5xqwqlmnGl3Pe9CivHtIKiUPUEA60IKrax3_1D5AXZahU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434468971</pqid></control><display><type>article</type><title>Neurogenetic approach for real-time damping of low-frequency oscillations in electric networks</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Shahriar, Mohammad Shoaib ; Shafiullah, Md ; Rana, Md Juel ; Ali, Amjad ; Ahmed, Ashik ; Rahman, Syed Masiur</creator><creatorcontrib>Shahriar, Mohammad Shoaib ; Shafiullah, Md ; Rana, Md Juel ; Ali, Amjad ; Ahmed, Ashik ; Rahman, Syed Masiur</creatorcontrib><description>•Proposed intelligent neuro-genetic approaches damp out LFO in electric networks.•Standard statistical indices validate the efficacy of the proposed technique.•Results comparison confirmed the superiority of the proposed approach over others.
Low-frequency oscillations should be dealt with extreme care for secure electric networks. This paper tunes the critical parameters of power system stabilizers in three different electric networks in real-time, employing the neurogenetic approach to damp out the low-frequency oscillations. The first network is a single machine infinite bus power system equipped with a power system stabilizer. Besides, the second and third networks are coordinated with second-generation flexible alternating current transmission system devices, namely a unified power flow controller and static synchronous compensator in coordination with power system stabilizers, respectively. The investigation of eigenvalue and minimum damping ratio analyses for different loading conditions proves the efficiency of the proposed approach. Additionally, the time-domain simulation comparison shows the superiority of the proposed approach over the conventional method. Besides, the satisfactory values of the statistical performance measures give confidence to the proposed approach in predicting power system stabilizer parameters and thus mitigating the low-frequency oscillations in real-time.</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2020.106600</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Confidence ; Damping ratio ; Eigenvalues ; Electric power systems ; Electrical networks ; Flexible AC power transmission systems ; Flexible alternating current (AC) transmission systems (FACTS) ; Low-frequency oscillations (LFO) ; Networks ; Neurogenetic model ; Oscillations ; Parameters ; Power flow ; Power system stability ; Real time ; Static synchronous compensator (STATCOM) ; Unified power flow controller (UPFC)</subject><ispartof>Computers & electrical engineering, 2020-05, Vol.83, p.106600-14, Article 106600</ispartof><rights>2020</rights><rights>Copyright Elsevier BV May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-54eb241587c026a841d1cd7ff42466e119fb5a9132e049d1c789d98dda66dad23</citedby><cites>FETCH-LOGICAL-c349t-54eb241587c026a841d1cd7ff42466e119fb5a9132e049d1c789d98dda66dad23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compeleceng.2020.106600$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Shahriar, Mohammad Shoaib</creatorcontrib><creatorcontrib>Shafiullah, Md</creatorcontrib><creatorcontrib>Rana, Md Juel</creatorcontrib><creatorcontrib>Ali, Amjad</creatorcontrib><creatorcontrib>Ahmed, Ashik</creatorcontrib><creatorcontrib>Rahman, Syed Masiur</creatorcontrib><title>Neurogenetic approach for real-time damping of low-frequency oscillations in electric networks</title><title>Computers & electrical engineering</title><description>•Proposed intelligent neuro-genetic approaches damp out LFO in electric networks.•Standard statistical indices validate the efficacy of the proposed technique.•Results comparison confirmed the superiority of the proposed approach over others.
Low-frequency oscillations should be dealt with extreme care for secure electric networks. This paper tunes the critical parameters of power system stabilizers in three different electric networks in real-time, employing the neurogenetic approach to damp out the low-frequency oscillations. The first network is a single machine infinite bus power system equipped with a power system stabilizer. Besides, the second and third networks are coordinated with second-generation flexible alternating current transmission system devices, namely a unified power flow controller and static synchronous compensator in coordination with power system stabilizers, respectively. The investigation of eigenvalue and minimum damping ratio analyses for different loading conditions proves the efficiency of the proposed approach. Additionally, the time-domain simulation comparison shows the superiority of the proposed approach over the conventional method. Besides, the satisfactory values of the statistical performance measures give confidence to the proposed approach in predicting power system stabilizer parameters and thus mitigating the low-frequency oscillations in real-time.</description><subject>Confidence</subject><subject>Damping ratio</subject><subject>Eigenvalues</subject><subject>Electric power systems</subject><subject>Electrical networks</subject><subject>Flexible AC power transmission systems</subject><subject>Flexible alternating current (AC) transmission systems (FACTS)</subject><subject>Low-frequency oscillations (LFO)</subject><subject>Networks</subject><subject>Neurogenetic model</subject><subject>Oscillations</subject><subject>Parameters</subject><subject>Power flow</subject><subject>Power system stability</subject><subject>Real time</subject><subject>Static synchronous compensator (STATCOM)</subject><subject>Unified power flow controller (UPFC)</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PxCAQxYnRxHX1O2A8dwVKaTmajf8Soxe9SliYrtS2VOi62W8vTT149DRhmHnz3g-hS0pWlFBx3ayM7wZowUC_XTHCpr4QhByhBa1KmZGyKI7RghBeZKUk4hSdxdiQ9Ba0WqD3Z9gFv4UeRmewHobgtfnAtQ84gG6z0XWAre4G12-xr3Hr91kd4GsHvTlgH41rWz0630fsejz5GEMSSnJ7Hz7jOTqpdRvh4rcu0dvd7ev6IXt6uX9c3zxlJudyzAoOG8ZpUZWGMKErTi01tqxrzrgQQKmsN4WWNGdAuEx_ZSWtrKzVQlhtWb5EV7Nu8p-8xVE1fhf6dFIxnnMuKlnSNCXnKRN8jAFqNQTX6XBQlKgJp2rUH5xqwqlmnGl3Pe9CivHtIKiUPUEA60IKrax3_1D5AXZahU0</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Shahriar, Mohammad Shoaib</creator><creator>Shafiullah, Md</creator><creator>Rana, Md Juel</creator><creator>Ali, Amjad</creator><creator>Ahmed, Ashik</creator><creator>Rahman, Syed Masiur</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202005</creationdate><title>Neurogenetic approach for real-time damping of low-frequency oscillations in electric networks</title><author>Shahriar, Mohammad Shoaib ; Shafiullah, Md ; Rana, Md Juel ; Ali, Amjad ; Ahmed, Ashik ; Rahman, Syed Masiur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-54eb241587c026a841d1cd7ff42466e119fb5a9132e049d1c789d98dda66dad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Confidence</topic><topic>Damping ratio</topic><topic>Eigenvalues</topic><topic>Electric power systems</topic><topic>Electrical networks</topic><topic>Flexible AC power transmission systems</topic><topic>Flexible alternating current (AC) transmission systems (FACTS)</topic><topic>Low-frequency oscillations (LFO)</topic><topic>Networks</topic><topic>Neurogenetic model</topic><topic>Oscillations</topic><topic>Parameters</topic><topic>Power flow</topic><topic>Power system stability</topic><topic>Real time</topic><topic>Static synchronous compensator (STATCOM)</topic><topic>Unified power flow controller (UPFC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahriar, Mohammad Shoaib</creatorcontrib><creatorcontrib>Shafiullah, Md</creatorcontrib><creatorcontrib>Rana, Md Juel</creatorcontrib><creatorcontrib>Ali, Amjad</creatorcontrib><creatorcontrib>Ahmed, Ashik</creatorcontrib><creatorcontrib>Rahman, Syed Masiur</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahriar, Mohammad Shoaib</au><au>Shafiullah, Md</au><au>Rana, Md Juel</au><au>Ali, Amjad</au><au>Ahmed, Ashik</au><au>Rahman, Syed Masiur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurogenetic approach for real-time damping of low-frequency oscillations in electric networks</atitle><jtitle>Computers & electrical engineering</jtitle><date>2020-05</date><risdate>2020</risdate><volume>83</volume><spage>106600</spage><epage>14</epage><pages>106600-14</pages><artnum>106600</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>•Proposed intelligent neuro-genetic approaches damp out LFO in electric networks.•Standard statistical indices validate the efficacy of the proposed technique.•Results comparison confirmed the superiority of the proposed approach over others.
Low-frequency oscillations should be dealt with extreme care for secure electric networks. This paper tunes the critical parameters of power system stabilizers in three different electric networks in real-time, employing the neurogenetic approach to damp out the low-frequency oscillations. The first network is a single machine infinite bus power system equipped with a power system stabilizer. Besides, the second and third networks are coordinated with second-generation flexible alternating current transmission system devices, namely a unified power flow controller and static synchronous compensator in coordination with power system stabilizers, respectively. The investigation of eigenvalue and minimum damping ratio analyses for different loading conditions proves the efficiency of the proposed approach. Additionally, the time-domain simulation comparison shows the superiority of the proposed approach over the conventional method. Besides, the satisfactory values of the statistical performance measures give confidence to the proposed approach in predicting power system stabilizer parameters and thus mitigating the low-frequency oscillations in real-time.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2020.106600</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7906 |
ispartof | Computers & electrical engineering, 2020-05, Vol.83, p.106600-14, Article 106600 |
issn | 0045-7906 1879-0755 |
language | eng |
recordid | cdi_proquest_journals_2434468971 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Confidence Damping ratio Eigenvalues Electric power systems Electrical networks Flexible AC power transmission systems Flexible alternating current (AC) transmission systems (FACTS) Low-frequency oscillations (LFO) Networks Neurogenetic model Oscillations Parameters Power flow Power system stability Real time Static synchronous compensator (STATCOM) Unified power flow controller (UPFC) |
title | Neurogenetic approach for real-time damping of low-frequency oscillations in electric networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurogenetic%20approach%20for%20real-time%20damping%20of%20low-frequency%20oscillations%20in%20electric%20networks&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Shahriar,%20Mohammad%20Shoaib&rft.date=2020-05&rft.volume=83&rft.spage=106600&rft.epage=14&rft.pages=106600-14&rft.artnum=106600&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2020.106600&rft_dat=%3Cproquest_cross%3E2434468971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434468971&rft_id=info:pmid/&rft_els_id=S0045790619322487&rfr_iscdi=true |