Site‐Specific Iron Substitution in STA‐28, a Large Pore Aluminophosphate Zeotype Prepared by Using 1,10‐Phenanthrolines as Framework‐Bound Templates

An AlPO4 zeotype has been prepared using the aromatic diamine 1,10‐phenanthroline and some of its methylated analogues as templates. In each case the two template N atoms bind to a specific framework Al site to expand its coordination to the unusual octahedral AlO4N2 environment. Furthermore, using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2020-08, Vol.132 (35), p.15298-15302
Hauptverfasser: Watts, Abigail E., Lozinska, Magdalena M., Slawin, Alexandra M. Z., Mayoral, Alvaro, Dawson, Daniel M., Ashbrook, Sharon E., Bode, Bela E., Dugulan, A. Iulian, Shannon, Mervyn D., Cox, Paul A., Turrina, Alessandro, Wright, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15302
container_issue 35
container_start_page 15298
container_title Angewandte Chemie
container_volume 132
creator Watts, Abigail E.
Lozinska, Magdalena M.
Slawin, Alexandra M. Z.
Mayoral, Alvaro
Dawson, Daniel M.
Ashbrook, Sharon E.
Bode, Bela E.
Dugulan, A. Iulian
Shannon, Mervyn D.
Cox, Paul A.
Turrina, Alessandro
Wright, Paul A.
description An AlPO4 zeotype has been prepared using the aromatic diamine 1,10‐phenanthroline and some of its methylated analogues as templates. In each case the two template N atoms bind to a specific framework Al site to expand its coordination to the unusual octahedral AlO4N2 environment. Furthermore, using this framework‐bound template, Fe atoms can be included selectively at this site in the framework by direct synthesis, as confirmed by annular dark field scanning transmission electron microscopy and Rietveld refinement. Calcination removes the organic molecules to give large pore framework solids, with BET surface areas up to 540 m2 g−1 and two perpendicular sets of channels that intersect to give pore space connected by 12‐ring openings along all crystallographic directions. The aromatic diamine 1,10‐phenanthroline acts as a framework‐bound template for the large‐pore aluminophosphate zeotype STA‐28 and can be used to introduce Fe for Al at a single crystallographic site, as verified by Rietveld refinement and annular dark field scanning transmission electron microscopy. Removal of the template leaves a crystalline microporous solid with accessible iron cations.
doi_str_mv 10.1002/ange.202005558
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434427874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434427874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3388-98b477e170d929207b0dfc0d8f0d68393042190264eb797728681d983694c6fa3</originalsourceid><addsrcrecordid>eNqFkcFO3DAURa2KSh1ot11bYkuGZ8eJ7eUUAUUaAdIMm24iJ3mZMc3YqZ0Iza6f0A_o1_ElGE0Fy66eru659y0uIV8ZzBkAPzdug3MOHKAoCvWBzFjBWZbLQh6RGYAQmeJCfyLHMT4CQMmlnpG_Kzvi8-8_qwEb29mG3gTv6Gqq42jHabRJ2KTXi8RwdUYNXZqwQXrvA9JFP-2s88PWx2FrRqQ_0I_7IbkBBxOwpfWePkTrNpSdMUgV91t0xo3b4HvrMFIT6VUwO3zy4Weyv_nJtXSNu6FPdfEz-diZPuKXf_eEPFxdri--Z8u765uLxTJr8lypTKtaSIlMQqu55iBraLsGWtVBW6pc5yA408BLgbXUUnJVKtZqlZdaNGVn8hNyeugdgv81YRyrRz8Fl15WXORCcKmkSNT8QDXBxxiwq4ZgdybsKwbV6wLV6wLV2wIpoA-BJ9vj_j90tbi9vnzPvgDGDI4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434427874</pqid></control><display><type>article</type><title>Site‐Specific Iron Substitution in STA‐28, a Large Pore Aluminophosphate Zeotype Prepared by Using 1,10‐Phenanthrolines as Framework‐Bound Templates</title><source>Wiley-Blackwell Journals</source><creator>Watts, Abigail E. ; Lozinska, Magdalena M. ; Slawin, Alexandra M. Z. ; Mayoral, Alvaro ; Dawson, Daniel M. ; Ashbrook, Sharon E. ; Bode, Bela E. ; Dugulan, A. Iulian ; Shannon, Mervyn D. ; Cox, Paul A. ; Turrina, Alessandro ; Wright, Paul A.</creator><creatorcontrib>Watts, Abigail E. ; Lozinska, Magdalena M. ; Slawin, Alexandra M. Z. ; Mayoral, Alvaro ; Dawson, Daniel M. ; Ashbrook, Sharon E. ; Bode, Bela E. ; Dugulan, A. Iulian ; Shannon, Mervyn D. ; Cox, Paul A. ; Turrina, Alessandro ; Wright, Paul A.</creatorcontrib><description>An AlPO4 zeotype has been prepared using the aromatic diamine 1,10‐phenanthroline and some of its methylated analogues as templates. In each case the two template N atoms bind to a specific framework Al site to expand its coordination to the unusual octahedral AlO4N2 environment. Furthermore, using this framework‐bound template, Fe atoms can be included selectively at this site in the framework by direct synthesis, as confirmed by annular dark field scanning transmission electron microscopy and Rietveld refinement. Calcination removes the organic molecules to give large pore framework solids, with BET surface areas up to 540 m2 g−1 and two perpendicular sets of channels that intersect to give pore space connected by 12‐ring openings along all crystallographic directions. The aromatic diamine 1,10‐phenanthroline acts as a framework‐bound template for the large‐pore aluminophosphate zeotype STA‐28 and can be used to introduce Fe for Al at a single crystallographic site, as verified by Rietveld refinement and annular dark field scanning transmission electron microscopy. Removal of the template leaves a crystalline microporous solid with accessible iron cations.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202005558</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>ADF STEM ; aluminophosphate ; Aluminum phosphate ; Chemistry ; Crystallography ; Diamines ; framework-bound template ; Iron ; iron substitution ; Organic chemistry ; Scanning transmission electron microscopy ; Transmission electron microscopy ; zeotype</subject><ispartof>Angewandte Chemie, 2020-08, Vol.132 (35), p.15298-15302</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3388-98b477e170d929207b0dfc0d8f0d68393042190264eb797728681d983694c6fa3</citedby><cites>FETCH-LOGICAL-c3388-98b477e170d929207b0dfc0d8f0d68393042190264eb797728681d983694c6fa3</cites><orcidid>0000-0002-8110-4535 ; 0000-0003-4479-3308 ; 0000-0002-4538-6782 ; 0000-0002-3384-271X ; 0000-0002-9527-6418 ; 0000-0002-5229-2717 ; 0000-0002-6618-8427 ; 0000-0002-4243-9957 ; 0000-0001-5559-9573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202005558$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202005558$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Watts, Abigail E.</creatorcontrib><creatorcontrib>Lozinska, Magdalena M.</creatorcontrib><creatorcontrib>Slawin, Alexandra M. Z.</creatorcontrib><creatorcontrib>Mayoral, Alvaro</creatorcontrib><creatorcontrib>Dawson, Daniel M.</creatorcontrib><creatorcontrib>Ashbrook, Sharon E.</creatorcontrib><creatorcontrib>Bode, Bela E.</creatorcontrib><creatorcontrib>Dugulan, A. Iulian</creatorcontrib><creatorcontrib>Shannon, Mervyn D.</creatorcontrib><creatorcontrib>Cox, Paul A.</creatorcontrib><creatorcontrib>Turrina, Alessandro</creatorcontrib><creatorcontrib>Wright, Paul A.</creatorcontrib><title>Site‐Specific Iron Substitution in STA‐28, a Large Pore Aluminophosphate Zeotype Prepared by Using 1,10‐Phenanthrolines as Framework‐Bound Templates</title><title>Angewandte Chemie</title><description>An AlPO4 zeotype has been prepared using the aromatic diamine 1,10‐phenanthroline and some of its methylated analogues as templates. In each case the two template N atoms bind to a specific framework Al site to expand its coordination to the unusual octahedral AlO4N2 environment. Furthermore, using this framework‐bound template, Fe atoms can be included selectively at this site in the framework by direct synthesis, as confirmed by annular dark field scanning transmission electron microscopy and Rietveld refinement. Calcination removes the organic molecules to give large pore framework solids, with BET surface areas up to 540 m2 g−1 and two perpendicular sets of channels that intersect to give pore space connected by 12‐ring openings along all crystallographic directions. The aromatic diamine 1,10‐phenanthroline acts as a framework‐bound template for the large‐pore aluminophosphate zeotype STA‐28 and can be used to introduce Fe for Al at a single crystallographic site, as verified by Rietveld refinement and annular dark field scanning transmission electron microscopy. Removal of the template leaves a crystalline microporous solid with accessible iron cations.</description><subject>ADF STEM</subject><subject>aluminophosphate</subject><subject>Aluminum phosphate</subject><subject>Chemistry</subject><subject>Crystallography</subject><subject>Diamines</subject><subject>framework-bound template</subject><subject>Iron</subject><subject>iron substitution</subject><subject>Organic chemistry</subject><subject>Scanning transmission electron microscopy</subject><subject>Transmission electron microscopy</subject><subject>zeotype</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkcFO3DAURa2KSh1ot11bYkuGZ8eJ7eUUAUUaAdIMm24iJ3mZMc3YqZ0Iza6f0A_o1_ElGE0Fy66eru659y0uIV8ZzBkAPzdug3MOHKAoCvWBzFjBWZbLQh6RGYAQmeJCfyLHMT4CQMmlnpG_Kzvi8-8_qwEb29mG3gTv6Gqq42jHabRJ2KTXi8RwdUYNXZqwQXrvA9JFP-2s88PWx2FrRqQ_0I_7IbkBBxOwpfWePkTrNpSdMUgV91t0xo3b4HvrMFIT6VUwO3zy4Weyv_nJtXSNu6FPdfEz-diZPuKXf_eEPFxdri--Z8u765uLxTJr8lypTKtaSIlMQqu55iBraLsGWtVBW6pc5yA408BLgbXUUnJVKtZqlZdaNGVn8hNyeugdgv81YRyrRz8Fl15WXORCcKmkSNT8QDXBxxiwq4ZgdybsKwbV6wLV6wLV2wIpoA-BJ9vj_j90tbi9vnzPvgDGDI4A</recordid><startdate>20200824</startdate><enddate>20200824</enddate><creator>Watts, Abigail E.</creator><creator>Lozinska, Magdalena M.</creator><creator>Slawin, Alexandra M. Z.</creator><creator>Mayoral, Alvaro</creator><creator>Dawson, Daniel M.</creator><creator>Ashbrook, Sharon E.</creator><creator>Bode, Bela E.</creator><creator>Dugulan, A. Iulian</creator><creator>Shannon, Mervyn D.</creator><creator>Cox, Paul A.</creator><creator>Turrina, Alessandro</creator><creator>Wright, Paul A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8110-4535</orcidid><orcidid>https://orcid.org/0000-0003-4479-3308</orcidid><orcidid>https://orcid.org/0000-0002-4538-6782</orcidid><orcidid>https://orcid.org/0000-0002-3384-271X</orcidid><orcidid>https://orcid.org/0000-0002-9527-6418</orcidid><orcidid>https://orcid.org/0000-0002-5229-2717</orcidid><orcidid>https://orcid.org/0000-0002-6618-8427</orcidid><orcidid>https://orcid.org/0000-0002-4243-9957</orcidid><orcidid>https://orcid.org/0000-0001-5559-9573</orcidid></search><sort><creationdate>20200824</creationdate><title>Site‐Specific Iron Substitution in STA‐28, a Large Pore Aluminophosphate Zeotype Prepared by Using 1,10‐Phenanthrolines as Framework‐Bound Templates</title><author>Watts, Abigail E. ; Lozinska, Magdalena M. ; Slawin, Alexandra M. Z. ; Mayoral, Alvaro ; Dawson, Daniel M. ; Ashbrook, Sharon E. ; Bode, Bela E. ; Dugulan, A. Iulian ; Shannon, Mervyn D. ; Cox, Paul A. ; Turrina, Alessandro ; Wright, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3388-98b477e170d929207b0dfc0d8f0d68393042190264eb797728681d983694c6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ADF STEM</topic><topic>aluminophosphate</topic><topic>Aluminum phosphate</topic><topic>Chemistry</topic><topic>Crystallography</topic><topic>Diamines</topic><topic>framework-bound template</topic><topic>Iron</topic><topic>iron substitution</topic><topic>Organic chemistry</topic><topic>Scanning transmission electron microscopy</topic><topic>Transmission electron microscopy</topic><topic>zeotype</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watts, Abigail E.</creatorcontrib><creatorcontrib>Lozinska, Magdalena M.</creatorcontrib><creatorcontrib>Slawin, Alexandra M. Z.</creatorcontrib><creatorcontrib>Mayoral, Alvaro</creatorcontrib><creatorcontrib>Dawson, Daniel M.</creatorcontrib><creatorcontrib>Ashbrook, Sharon E.</creatorcontrib><creatorcontrib>Bode, Bela E.</creatorcontrib><creatorcontrib>Dugulan, A. Iulian</creatorcontrib><creatorcontrib>Shannon, Mervyn D.</creatorcontrib><creatorcontrib>Cox, Paul A.</creatorcontrib><creatorcontrib>Turrina, Alessandro</creatorcontrib><creatorcontrib>Wright, Paul A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watts, Abigail E.</au><au>Lozinska, Magdalena M.</au><au>Slawin, Alexandra M. Z.</au><au>Mayoral, Alvaro</au><au>Dawson, Daniel M.</au><au>Ashbrook, Sharon E.</au><au>Bode, Bela E.</au><au>Dugulan, A. Iulian</au><au>Shannon, Mervyn D.</au><au>Cox, Paul A.</au><au>Turrina, Alessandro</au><au>Wright, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site‐Specific Iron Substitution in STA‐28, a Large Pore Aluminophosphate Zeotype Prepared by Using 1,10‐Phenanthrolines as Framework‐Bound Templates</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-08-24</date><risdate>2020</risdate><volume>132</volume><issue>35</issue><spage>15298</spage><epage>15302</epage><pages>15298-15302</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>An AlPO4 zeotype has been prepared using the aromatic diamine 1,10‐phenanthroline and some of its methylated analogues as templates. In each case the two template N atoms bind to a specific framework Al site to expand its coordination to the unusual octahedral AlO4N2 environment. Furthermore, using this framework‐bound template, Fe atoms can be included selectively at this site in the framework by direct synthesis, as confirmed by annular dark field scanning transmission electron microscopy and Rietveld refinement. Calcination removes the organic molecules to give large pore framework solids, with BET surface areas up to 540 m2 g−1 and two perpendicular sets of channels that intersect to give pore space connected by 12‐ring openings along all crystallographic directions. The aromatic diamine 1,10‐phenanthroline acts as a framework‐bound template for the large‐pore aluminophosphate zeotype STA‐28 and can be used to introduce Fe for Al at a single crystallographic site, as verified by Rietveld refinement and annular dark field scanning transmission electron microscopy. Removal of the template leaves a crystalline microporous solid with accessible iron cations.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202005558</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8110-4535</orcidid><orcidid>https://orcid.org/0000-0003-4479-3308</orcidid><orcidid>https://orcid.org/0000-0002-4538-6782</orcidid><orcidid>https://orcid.org/0000-0002-3384-271X</orcidid><orcidid>https://orcid.org/0000-0002-9527-6418</orcidid><orcidid>https://orcid.org/0000-0002-5229-2717</orcidid><orcidid>https://orcid.org/0000-0002-6618-8427</orcidid><orcidid>https://orcid.org/0000-0002-4243-9957</orcidid><orcidid>https://orcid.org/0000-0001-5559-9573</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2020-08, Vol.132 (35), p.15298-15302
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2434427874
source Wiley-Blackwell Journals
subjects ADF STEM
aluminophosphate
Aluminum phosphate
Chemistry
Crystallography
Diamines
framework-bound template
Iron
iron substitution
Organic chemistry
Scanning transmission electron microscopy
Transmission electron microscopy
zeotype
title Site‐Specific Iron Substitution in STA‐28, a Large Pore Aluminophosphate Zeotype Prepared by Using 1,10‐Phenanthrolines as Framework‐Bound Templates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site%E2%80%90Specific%20Iron%20Substitution%20in%20STA%E2%80%9028,%20a%20Large%20Pore%20Aluminophosphate%20Zeotype%20Prepared%20by%20Using%201,10%E2%80%90Phenanthrolines%20as%20Framework%E2%80%90Bound%20Templates&rft.jtitle=Angewandte%20Chemie&rft.au=Watts,%20Abigail%20E.&rft.date=2020-08-24&rft.volume=132&rft.issue=35&rft.spage=15298&rft.epage=15302&rft.pages=15298-15302&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202005558&rft_dat=%3Cproquest_cross%3E2434427874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434427874&rft_id=info:pmid/&rfr_iscdi=true