Low power and high-speed FPGA implementation for 4D memristor chaotic system for image encryption

In this paper, we proposed a novel low power and high-speed FPGA implementation of the 4D memristor chaotic system with cubic nonlinearity based on Xilinx System Generator (XSG) model. Firstly, a pseudo-random number generator based on the proposed XSG FPGA implementation of the proposed 4D memristo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-08, Vol.79 (31-32), p.23203-23222
Hauptverfasser: Hagras, Esam A. A., Saber, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23222
container_issue 31-32
container_start_page 23203
container_title Multimedia tools and applications
container_volume 79
creator Hagras, Esam A. A.
Saber, Mohamed
description In this paper, we proposed a novel low power and high-speed FPGA implementation of the 4D memristor chaotic system with cubic nonlinearity based on Xilinx System Generator (XSG) model. Firstly, a pseudo-random number generator based on the proposed XSG FPGA implementation of the proposed 4D memristor chaotic system which implemented into Xilinx Spartan-6 X6SLX45 board with 32 fixed-point format. The aim of the FPGA implementation is increasing the frequency of the memristor chaotic random number generators. The FPGA implementation of the memristor chaotic system results show that the new design approach achieves a maximum frequency of 393 MHz and dissipates 117  m watt. The standard fifteen randomization tests are used to measure the quality of the proposed pseudo-random number generator based on the 4D memristor chaotic system and it gives an excellent randomization analysis. Also, the gray image encryption scheme based on the 4D memristor chaotic system has been introduced. The proposed cryptosystem has a large keyspace, very low correlation values, high entropy which is much closer to the ideal entropy value, a high number of pixels change rate and high unified average changing intensity values. The results and security analysis of the proposed encryption scheme demonstrate that the investigated encryption approach can protect high speed and high security against various attack.
doi_str_mv 10.1007/s11042-019-08517-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434396400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434396400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bb7d09176278f1eafb9b30cb3ff55968dc3f60eb7e46d6b5d1bb9b1987961423</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gsMRt8sWPHY1VoQaoEQ3crTuw2VRMHO1XUf4_bIrEx3Z3ufe9OD6FHoM9AqXyJAJRnhIIitMhBkvEKTSCXjEiZwXXqWUGJzCncorsYd5SCyDM-QeXKj7j3ow247Gq8bTZbEntra7z4Ws5w0_Z729puKIfGd9j5gPkrbm0bmjikodqWfmgqHI9xsO1537TlxmLbVeHYn6B7dOPKfbQPv3WK1ou39fydrD6XH_PZilQM1ECMkTVVIEUmCwe2dEYZRivDnMtzJYq6Yk5Qa6TlohYmr8EkBahCKgE8Y1P0dLHtg_8-2DjonT-ELl3UGWecKcEpTarsoqqCjzFYp_uQHg5HDVSfktSXJHVKUp-T1GOC2AWKSdxtbPiz_of6Ac0Rd5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434396400</pqid></control><display><type>article</type><title>Low power and high-speed FPGA implementation for 4D memristor chaotic system for image encryption</title><source>SpringerLink Journals</source><creator>Hagras, Esam A. A. ; Saber, Mohamed</creator><creatorcontrib>Hagras, Esam A. A. ; Saber, Mohamed</creatorcontrib><description>In this paper, we proposed a novel low power and high-speed FPGA implementation of the 4D memristor chaotic system with cubic nonlinearity based on Xilinx System Generator (XSG) model. Firstly, a pseudo-random number generator based on the proposed XSG FPGA implementation of the proposed 4D memristor chaotic system which implemented into Xilinx Spartan-6 X6SLX45 board with 32 fixed-point format. The aim of the FPGA implementation is increasing the frequency of the memristor chaotic random number generators. The FPGA implementation of the memristor chaotic system results show that the new design approach achieves a maximum frequency of 393 MHz and dissipates 117  m watt. The standard fifteen randomization tests are used to measure the quality of the proposed pseudo-random number generator based on the 4D memristor chaotic system and it gives an excellent randomization analysis. Also, the gray image encryption scheme based on the 4D memristor chaotic system has been introduced. The proposed cryptosystem has a large keyspace, very low correlation values, high entropy which is much closer to the ideal entropy value, a high number of pixels change rate and high unified average changing intensity values. The results and security analysis of the proposed encryption scheme demonstrate that the investigated encryption approach can protect high speed and high security against various attack.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-08517-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Chaos theory ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Design ; Encryption ; Entropy ; High speed ; Memristors ; Multimedia ; Multimedia Information Systems ; Pseudorandom ; Random numbers ; Randomization ; Security ; Simulation ; Special Purpose and Application-Based Systems ; User interface</subject><ispartof>Multimedia tools and applications, 2020-08, Vol.79 (31-32), p.23203-23222</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bb7d09176278f1eafb9b30cb3ff55968dc3f60eb7e46d6b5d1bb9b1987961423</citedby><cites>FETCH-LOGICAL-c319t-bb7d09176278f1eafb9b30cb3ff55968dc3f60eb7e46d6b5d1bb9b1987961423</cites><orcidid>0000-0003-1665-5944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-08517-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-08517-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hagras, Esam A. A.</creatorcontrib><creatorcontrib>Saber, Mohamed</creatorcontrib><title>Low power and high-speed FPGA implementation for 4D memristor chaotic system for image encryption</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, we proposed a novel low power and high-speed FPGA implementation of the 4D memristor chaotic system with cubic nonlinearity based on Xilinx System Generator (XSG) model. Firstly, a pseudo-random number generator based on the proposed XSG FPGA implementation of the proposed 4D memristor chaotic system which implemented into Xilinx Spartan-6 X6SLX45 board with 32 fixed-point format. The aim of the FPGA implementation is increasing the frequency of the memristor chaotic random number generators. The FPGA implementation of the memristor chaotic system results show that the new design approach achieves a maximum frequency of 393 MHz and dissipates 117  m watt. The standard fifteen randomization tests are used to measure the quality of the proposed pseudo-random number generator based on the 4D memristor chaotic system and it gives an excellent randomization analysis. Also, the gray image encryption scheme based on the 4D memristor chaotic system has been introduced. The proposed cryptosystem has a large keyspace, very low correlation values, high entropy which is much closer to the ideal entropy value, a high number of pixels change rate and high unified average changing intensity values. The results and security analysis of the proposed encryption scheme demonstrate that the investigated encryption approach can protect high speed and high security against various attack.</description><subject>Algorithms</subject><subject>Chaos theory</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Design</subject><subject>Encryption</subject><subject>Entropy</subject><subject>High speed</subject><subject>Memristors</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Pseudorandom</subject><subject>Random numbers</subject><subject>Randomization</subject><subject>Security</subject><subject>Simulation</subject><subject>Special Purpose and Application-Based Systems</subject><subject>User interface</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5gsMRt8sWPHY1VoQaoEQ3crTuw2VRMHO1XUf4_bIrEx3Z3ufe9OD6FHoM9AqXyJAJRnhIIitMhBkvEKTSCXjEiZwXXqWUGJzCncorsYd5SCyDM-QeXKj7j3ow247Gq8bTZbEntra7z4Ws5w0_Z729puKIfGd9j5gPkrbm0bmjikodqWfmgqHI9xsO1537TlxmLbVeHYn6B7dOPKfbQPv3WK1ou39fydrD6XH_PZilQM1ECMkTVVIEUmCwe2dEYZRivDnMtzJYq6Yk5Qa6TlohYmr8EkBahCKgE8Y1P0dLHtg_8-2DjonT-ELl3UGWecKcEpTarsoqqCjzFYp_uQHg5HDVSfktSXJHVKUp-T1GOC2AWKSdxtbPiz_of6Ac0Rd5A</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Hagras, Esam A. A.</creator><creator>Saber, Mohamed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1665-5944</orcidid></search><sort><creationdate>20200801</creationdate><title>Low power and high-speed FPGA implementation for 4D memristor chaotic system for image encryption</title><author>Hagras, Esam A. A. ; Saber, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bb7d09176278f1eafb9b30cb3ff55968dc3f60eb7e46d6b5d1bb9b1987961423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Chaos theory</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Design</topic><topic>Encryption</topic><topic>Entropy</topic><topic>High speed</topic><topic>Memristors</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Pseudorandom</topic><topic>Random numbers</topic><topic>Randomization</topic><topic>Security</topic><topic>Simulation</topic><topic>Special Purpose and Application-Based Systems</topic><topic>User interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagras, Esam A. A.</creatorcontrib><creatorcontrib>Saber, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagras, Esam A. A.</au><au>Saber, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low power and high-speed FPGA implementation for 4D memristor chaotic system for image encryption</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>79</volume><issue>31-32</issue><spage>23203</spage><epage>23222</epage><pages>23203-23222</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, we proposed a novel low power and high-speed FPGA implementation of the 4D memristor chaotic system with cubic nonlinearity based on Xilinx System Generator (XSG) model. Firstly, a pseudo-random number generator based on the proposed XSG FPGA implementation of the proposed 4D memristor chaotic system which implemented into Xilinx Spartan-6 X6SLX45 board with 32 fixed-point format. The aim of the FPGA implementation is increasing the frequency of the memristor chaotic random number generators. The FPGA implementation of the memristor chaotic system results show that the new design approach achieves a maximum frequency of 393 MHz and dissipates 117  m watt. The standard fifteen randomization tests are used to measure the quality of the proposed pseudo-random number generator based on the 4D memristor chaotic system and it gives an excellent randomization analysis. Also, the gray image encryption scheme based on the 4D memristor chaotic system has been introduced. The proposed cryptosystem has a large keyspace, very low correlation values, high entropy which is much closer to the ideal entropy value, a high number of pixels change rate and high unified average changing intensity values. The results and security analysis of the proposed encryption scheme demonstrate that the investigated encryption approach can protect high speed and high security against various attack.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-08517-w</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1665-5944</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-08, Vol.79 (31-32), p.23203-23222
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2434396400
source SpringerLink Journals
subjects Algorithms
Chaos theory
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Design
Encryption
Entropy
High speed
Memristors
Multimedia
Multimedia Information Systems
Pseudorandom
Random numbers
Randomization
Security
Simulation
Special Purpose and Application-Based Systems
User interface
title Low power and high-speed FPGA implementation for 4D memristor chaotic system for image encryption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20power%20and%20high-speed%20FPGA%20implementation%20for%204D%20memristor%20chaotic%20system%20for%20image%20encryption&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Hagras,%20Esam%20A.%20A.&rft.date=2020-08-01&rft.volume=79&rft.issue=31-32&rft.spage=23203&rft.epage=23222&rft.pages=23203-23222&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-08517-w&rft_dat=%3Cproquest_cross%3E2434396400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434396400&rft_id=info:pmid/&rfr_iscdi=true