Fast stripe noise removal from hyperspectral image via multi-scale dilated unidirectional convolution
Hyperspectral images (HSIs) are often contaminated by noises due to the multi-detector imaging systems, which greatly affects the subsequent HSIs interpretation and application. The 3D HSIs deliver extra spectral information, which makes the most existing destriping algorithms hardly satisfied, and...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2020-08, Vol.79 (31-32), p.23007-23022 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23022 |
---|---|
container_issue | 31-32 |
container_start_page | 23007 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Wang, Ziying Wang, Guodong Pan, Zhenkuan Zhang, Jiahua Zhai, Guangtao |
description | Hyperspectral images (HSIs) are often contaminated by noises due to the multi-detector imaging systems, which greatly affects the subsequent HSIs interpretation and application. The 3D HSIs deliver extra spectral information, which makes the most existing destriping algorithms hardly satisfied, and the complete stripes removal and less test time consuming remain to be overcome. To meet these challenges, we present a multi-scale dilated unidirectional convolution network (MsDUC) with the following contributions. First, the deep learning-based method can fully exploit and preserve spatial-spectral correlations in 3D HSIs while the conventional methods failed to realize it. Second, different dilated convolution learns different scale features, so the introduced multi-scale dilated convolution could get more contextual information for the final restoration. Third, the clear directional signature of stripe noise and the unidirectional total variation (UTV) model inspired us to put forward the unidirectional convolution to capture the directional signature of stripe, meanwhile, the less trainable parameters and the utilized residual strategy speed up the learning process. Experimental results have shown that our method outperforms many of the state-of-the-art methods in both image restoration performance and test running time.
Our code can be download from
https://github.com/doctorwgd/MsDUC
. |
doi_str_mv | 10.1007/s11042-020-09065-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434390903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434390903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7f83e94458c101eead9ea5d06273195ae1a0822febc52e03a87a66f108e448bd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJVz-OsrgqLHjRc8i20zVL29SkXdh_b9YK3jwlmTzvMPMQcsvhngPkD5FzUIKBAAYlZJqpM7LgOpcszwU_T3dZAMs18EtyFeMegGdaqAXBtY0jjWNwA9Leu4g0YOcPtqVN8B39PA4Y4oDVGFLJdXaH9OAs7aZ2dCxWtkVau9aOWNOpd7ULCXW-T3Dl-4Nvp9Prmlw0to1483suycf66X31wjZvz6-rxw2rJC9HljeFxFIpXVQcOKKtS7S6hkzk6V9b5BYKIRrcVlogSFvkNssaDgUqVWxruSR3c98h-K8J42j2fgppmGiEkkqWSY5MlJipKvgYAzZmCGmzcDQczEmnmXWapNP86DQqheQcignudxj-Wv-T-gaeu3m8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434390903</pqid></control><display><type>article</type><title>Fast stripe noise removal from hyperspectral image via multi-scale dilated unidirectional convolution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Ziying ; Wang, Guodong ; Pan, Zhenkuan ; Zhang, Jiahua ; Zhai, Guangtao</creator><creatorcontrib>Wang, Ziying ; Wang, Guodong ; Pan, Zhenkuan ; Zhang, Jiahua ; Zhai, Guangtao</creatorcontrib><description>Hyperspectral images (HSIs) are often contaminated by noises due to the multi-detector imaging systems, which greatly affects the subsequent HSIs interpretation and application. The 3D HSIs deliver extra spectral information, which makes the most existing destriping algorithms hardly satisfied, and the complete stripes removal and less test time consuming remain to be overcome. To meet these challenges, we present a multi-scale dilated unidirectional convolution network (MsDUC) with the following contributions. First, the deep learning-based method can fully exploit and preserve spatial-spectral correlations in 3D HSIs while the conventional methods failed to realize it. Second, different dilated convolution learns different scale features, so the introduced multi-scale dilated convolution could get more contextual information for the final restoration. Third, the clear directional signature of stripe noise and the unidirectional total variation (UTV) model inspired us to put forward the unidirectional convolution to capture the directional signature of stripe, meanwhile, the less trainable parameters and the utilized residual strategy speed up the learning process. Experimental results have shown that our method outperforms many of the state-of-the-art methods in both image restoration performance and test running time.
Our code can be download from
https://github.com/doctorwgd/MsDUC
.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09065-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Science ; Convolution ; Data Structures and Information Theory ; Deep learning ; Hyperspectral imaging ; Image restoration ; Machine learning ; Methods ; Multimedia ; Multimedia Information Systems ; Noise ; Special Purpose and Application-Based Systems ; Wavelet transforms</subject><ispartof>Multimedia tools and applications, 2020-08, Vol.79 (31-32), p.23007-23022</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7f83e94458c101eead9ea5d06273195ae1a0822febc52e03a87a66f108e448bd3</citedby><cites>FETCH-LOGICAL-c319t-7f83e94458c101eead9ea5d06273195ae1a0822febc52e03a87a66f108e448bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09065-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09065-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Ziying</creatorcontrib><creatorcontrib>Wang, Guodong</creatorcontrib><creatorcontrib>Pan, Zhenkuan</creatorcontrib><creatorcontrib>Zhang, Jiahua</creatorcontrib><creatorcontrib>Zhai, Guangtao</creatorcontrib><title>Fast stripe noise removal from hyperspectral image via multi-scale dilated unidirectional convolution</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Hyperspectral images (HSIs) are often contaminated by noises due to the multi-detector imaging systems, which greatly affects the subsequent HSIs interpretation and application. The 3D HSIs deliver extra spectral information, which makes the most existing destriping algorithms hardly satisfied, and the complete stripes removal and less test time consuming remain to be overcome. To meet these challenges, we present a multi-scale dilated unidirectional convolution network (MsDUC) with the following contributions. First, the deep learning-based method can fully exploit and preserve spatial-spectral correlations in 3D HSIs while the conventional methods failed to realize it. Second, different dilated convolution learns different scale features, so the introduced multi-scale dilated convolution could get more contextual information for the final restoration. Third, the clear directional signature of stripe noise and the unidirectional total variation (UTV) model inspired us to put forward the unidirectional convolution to capture the directional signature of stripe, meanwhile, the less trainable parameters and the utilized residual strategy speed up the learning process. Experimental results have shown that our method outperforms many of the state-of-the-art methods in both image restoration performance and test running time.
Our code can be download from
https://github.com/doctorwgd/MsDUC
.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Hyperspectral imaging</subject><subject>Image restoration</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Noise</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Wavelet transforms</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJVz-OsrgqLHjRc8i20zVL29SkXdh_b9YK3jwlmTzvMPMQcsvhngPkD5FzUIKBAAYlZJqpM7LgOpcszwU_T3dZAMs18EtyFeMegGdaqAXBtY0jjWNwA9Leu4g0YOcPtqVN8B39PA4Y4oDVGFLJdXaH9OAs7aZ2dCxWtkVau9aOWNOpd7ULCXW-T3Dl-4Nvp9Prmlw0to1483suycf66X31wjZvz6-rxw2rJC9HljeFxFIpXVQcOKKtS7S6hkzk6V9b5BYKIRrcVlogSFvkNssaDgUqVWxruSR3c98h-K8J42j2fgppmGiEkkqWSY5MlJipKvgYAzZmCGmzcDQczEmnmXWapNP86DQqheQcignudxj-Wv-T-gaeu3m8</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wang, Ziying</creator><creator>Wang, Guodong</creator><creator>Pan, Zhenkuan</creator><creator>Zhang, Jiahua</creator><creator>Zhai, Guangtao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200801</creationdate><title>Fast stripe noise removal from hyperspectral image via multi-scale dilated unidirectional convolution</title><author>Wang, Ziying ; Wang, Guodong ; Pan, Zhenkuan ; Zhang, Jiahua ; Zhai, Guangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7f83e94458c101eead9ea5d06273195ae1a0822febc52e03a87a66f108e448bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Hyperspectral imaging</topic><topic>Image restoration</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Noise</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ziying</creatorcontrib><creatorcontrib>Wang, Guodong</creatorcontrib><creatorcontrib>Pan, Zhenkuan</creatorcontrib><creatorcontrib>Zhang, Jiahua</creatorcontrib><creatorcontrib>Zhai, Guangtao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ziying</au><au>Wang, Guodong</au><au>Pan, Zhenkuan</au><au>Zhang, Jiahua</au><au>Zhai, Guangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast stripe noise removal from hyperspectral image via multi-scale dilated unidirectional convolution</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>79</volume><issue>31-32</issue><spage>23007</spage><epage>23022</epage><pages>23007-23022</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Hyperspectral images (HSIs) are often contaminated by noises due to the multi-detector imaging systems, which greatly affects the subsequent HSIs interpretation and application. The 3D HSIs deliver extra spectral information, which makes the most existing destriping algorithms hardly satisfied, and the complete stripes removal and less test time consuming remain to be overcome. To meet these challenges, we present a multi-scale dilated unidirectional convolution network (MsDUC) with the following contributions. First, the deep learning-based method can fully exploit and preserve spatial-spectral correlations in 3D HSIs while the conventional methods failed to realize it. Second, different dilated convolution learns different scale features, so the introduced multi-scale dilated convolution could get more contextual information for the final restoration. Third, the clear directional signature of stripe noise and the unidirectional total variation (UTV) model inspired us to put forward the unidirectional convolution to capture the directional signature of stripe, meanwhile, the less trainable parameters and the utilized residual strategy speed up the learning process. Experimental results have shown that our method outperforms many of the state-of-the-art methods in both image restoration performance and test running time.
Our code can be download from
https://github.com/doctorwgd/MsDUC
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09065-4</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-08, Vol.79 (31-32), p.23007-23022 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2434390903 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Computer Communication Networks Computer Science Convolution Data Structures and Information Theory Deep learning Hyperspectral imaging Image restoration Machine learning Methods Multimedia Multimedia Information Systems Noise Special Purpose and Application-Based Systems Wavelet transforms |
title | Fast stripe noise removal from hyperspectral image via multi-scale dilated unidirectional convolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20stripe%20noise%20removal%20from%20hyperspectral%20image%20via%20multi-scale%20dilated%20unidirectional%20convolution&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Wang,%20Ziying&rft.date=2020-08-01&rft.volume=79&rft.issue=31-32&rft.spage=23007&rft.epage=23022&rft.pages=23007-23022&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09065-4&rft_dat=%3Cproquest_cross%3E2434390903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434390903&rft_id=info:pmid/&rfr_iscdi=true |