Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains
Novel bridged silsesquioxanes (BSs) incorporating short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links were synthesized by the sol–gel process from the organosilane precursors (CH 3 CH 2 O) 3 -Si-(CH 2 ) 3 -NHC(=O)NH-R-NH(O=C)NH-(CH 2 ) 3 -Si-(OCH...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2020-09, Vol.95 (3), p.620-634 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 3 |
container_start_page | 620 |
container_title | Journal of sol-gel science and technology |
container_volume | 95 |
creator | Nunes, S. C. Fernandes, M. Gonçalves, H. M. R. Serrano, J. L. Almeida, P. Bermudez, V. de Zea |
description | Novel bridged silsesquioxanes (BSs) incorporating short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links were synthesized by the sol–gel process from the organosilane precursors (CH
3
CH
2
O)
3
-Si-(CH
2
)
3
-NHC(=O)NH-R-NH(O=C)NH-(CH
2
)
3
-Si-(OCH
2
CH
3
)
3
, with R≡-[CH(CH
3
)CH
2
O]
x
CH
2
CH(CH
3
)- (x∼2.5 and 6.1) or R≡-(CH
2
)
2
O(CH
2
)
2
O(CH
2
)
2
-, respectively. The new BSs were identified by the notations d-U′(
Y
′) with
Y
′ = 400 and 230, and d-U(
Y
) with
Y
= 148, where d stands for di, and U/U′ denote the urea group. The hybrid materials were produced as transparent, amorphous, homogeneous, and soft monoliths, although d-U(148) presented some rigidity. In the three samples the siliceous framework is mainly composed of [–(CH
2
)Si(OSi)
3
] and [–(CH
2
)Si(OSi)
2
(OH)] substructures. The highest polycondensation degree of the siloxane network was found in the case of d-U′(400), pointing out the formation of a three dimensional framework. In the three materials the urea groups are extensively involved in the formation of strong ordered urea-urea hydrogen-bonded aggregates of different degree of order. The d-U′(230) BS is a promising candidate as mold material for micropatterning applications aiming the fabrication of smart coatings. The prospects for these materials in flexible electrochromic devices for smart windows, where they can act as outermost substrates, are also excellent.
Highlights
Amorphous, transparent, and homogenous bridged silsesquioxanes (BSs) were synthesized by the sol–gel process.
The materials incorporate short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links.
The BS incorporating the shortest oligo(oxypropylene) chains exhibit micropatterning ability. |
doi_str_mv | 10.1007/s10971-020-05272-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434390845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434390845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7dada9ff8e94e264bb1b15f6b3a8e65ff428c8a906d276e3a20f142ff989952e3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicYGDYe3YcXxE5VeqxAXOlpPYrUtqFzuVmrcnJZV647TSaGZ290PomsA9ARAPiYAUBAMFDJwKivkJmhAucsxKVpyiCUhaYhAgztFFSisA4IyICfJPDm-j0VkdQ0q4df7bNFlybdhpb7JlX0XXZGvdmeh0mzLn6xA3IerO-UUWWrcIt2HXb2LY9K3x5i7Tvjnqplse5HqpnU-X6MwONebqMKfo6-X5c_aG5x-v77PHOa5zXnRYNLrR0trSSGZowaqKVITbosp1aQpuLaNlXWoJRUNFYXJNwRJGrZWllJyafIpuxt7hsJ-tSZ1ahW30w0pFWc5yCSXjg4uOrr_no7FqE91ax14RUHuuauSqBq7qj6vah_IxlAazX5h4rP4n9Qs4UX2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434390845</pqid></control><display><type>article</type><title>Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nunes, S. C. ; Fernandes, M. ; Gonçalves, H. M. R. ; Serrano, J. L. ; Almeida, P. ; Bermudez, V. de Zea</creator><creatorcontrib>Nunes, S. C. ; Fernandes, M. ; Gonçalves, H. M. R. ; Serrano, J. L. ; Almeida, P. ; Bermudez, V. de Zea</creatorcontrib><description>Novel bridged silsesquioxanes (BSs) incorporating short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links were synthesized by the sol–gel process from the organosilane precursors (CH
3
CH
2
O)
3
-Si-(CH
2
)
3
-NHC(=O)NH-R-NH(O=C)NH-(CH
2
)
3
-Si-(OCH
2
CH
3
)
3
, with R≡-[CH(CH
3
)CH
2
O]
x
CH
2
CH(CH
3
)- (x∼2.5 and 6.1) or R≡-(CH
2
)
2
O(CH
2
)
2
O(CH
2
)
2
-, respectively. The new BSs were identified by the notations d-U′(
Y
′) with
Y
′ = 400 and 230, and d-U(
Y
) with
Y
= 148, where d stands for di, and U/U′ denote the urea group. The hybrid materials were produced as transparent, amorphous, homogeneous, and soft monoliths, although d-U(148) presented some rigidity. In the three samples the siliceous framework is mainly composed of [–(CH
2
)Si(OSi)
3
] and [–(CH
2
)Si(OSi)
2
(OH)] substructures. The highest polycondensation degree of the siloxane network was found in the case of d-U′(400), pointing out the formation of a three dimensional framework. In the three materials the urea groups are extensively involved in the formation of strong ordered urea-urea hydrogen-bonded aggregates of different degree of order. The d-U′(230) BS is a promising candidate as mold material for micropatterning applications aiming the fabrication of smart coatings. The prospects for these materials in flexible electrochromic devices for smart windows, where they can act as outermost substrates, are also excellent.
Highlights
Amorphous, transparent, and homogenous bridged silsesquioxanes (BSs) were synthesized by the sol–gel process.
The materials incorporate short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links.
The BS incorporating the shortest oligo(oxypropylene) chains exhibit micropatterning ability.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-020-05272-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amorphous materials ; Bonding strength ; Ceramics ; Chains ; Chemistry and Materials Science ; Composites ; Crosslinking ; Electrochromic cells ; Electrochromism ; Glass ; hybrids and solution chemistries ; Hydrogen bonding ; Inorganic Chemistry ; Materials Science ; Micropatterning ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Review Paper: Sol-gel ; Silicon ; Siloxanes ; Smart materials ; Sol-gel processes ; Substrates ; Substructures ; Synthesis ; Ureas ; Windows (apertures)</subject><ispartof>Journal of sol-gel science and technology, 2020-09, Vol.95 (3), p.620-634</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7dada9ff8e94e264bb1b15f6b3a8e65ff428c8a906d276e3a20f142ff989952e3</citedby><cites>FETCH-LOGICAL-c356t-7dada9ff8e94e264bb1b15f6b3a8e65ff428c8a906d276e3a20f142ff989952e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-020-05272-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-020-05272-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nunes, S. C.</creatorcontrib><creatorcontrib>Fernandes, M.</creatorcontrib><creatorcontrib>Gonçalves, H. M. R.</creatorcontrib><creatorcontrib>Serrano, J. L.</creatorcontrib><creatorcontrib>Almeida, P.</creatorcontrib><creatorcontrib>Bermudez, V. de Zea</creatorcontrib><title>Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Novel bridged silsesquioxanes (BSs) incorporating short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links were synthesized by the sol–gel process from the organosilane precursors (CH
3
CH
2
O)
3
-Si-(CH
2
)
3
-NHC(=O)NH-R-NH(O=C)NH-(CH
2
)
3
-Si-(OCH
2
CH
3
)
3
, with R≡-[CH(CH
3
)CH
2
O]
x
CH
2
CH(CH
3
)- (x∼2.5 and 6.1) or R≡-(CH
2
)
2
O(CH
2
)
2
O(CH
2
)
2
-, respectively. The new BSs were identified by the notations d-U′(
Y
′) with
Y
′ = 400 and 230, and d-U(
Y
) with
Y
= 148, where d stands for di, and U/U′ denote the urea group. The hybrid materials were produced as transparent, amorphous, homogeneous, and soft monoliths, although d-U(148) presented some rigidity. In the three samples the siliceous framework is mainly composed of [–(CH
2
)Si(OSi)
3
] and [–(CH
2
)Si(OSi)
2
(OH)] substructures. The highest polycondensation degree of the siloxane network was found in the case of d-U′(400), pointing out the formation of a three dimensional framework. In the three materials the urea groups are extensively involved in the formation of strong ordered urea-urea hydrogen-bonded aggregates of different degree of order. The d-U′(230) BS is a promising candidate as mold material for micropatterning applications aiming the fabrication of smart coatings. The prospects for these materials in flexible electrochromic devices for smart windows, where they can act as outermost substrates, are also excellent.
Highlights
Amorphous, transparent, and homogenous bridged silsesquioxanes (BSs) were synthesized by the sol–gel process.
The materials incorporate short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links.
The BS incorporating the shortest oligo(oxypropylene) chains exhibit micropatterning ability.</description><subject>Amorphous materials</subject><subject>Bonding strength</subject><subject>Ceramics</subject><subject>Chains</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crosslinking</subject><subject>Electrochromic cells</subject><subject>Electrochromism</subject><subject>Glass</subject><subject>hybrids and solution chemistries</subject><subject>Hydrogen bonding</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Micropatterning</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Review Paper: Sol-gel</subject><subject>Silicon</subject><subject>Siloxanes</subject><subject>Smart materials</subject><subject>Sol-gel processes</subject><subject>Substrates</subject><subject>Substructures</subject><subject>Synthesis</subject><subject>Ureas</subject><subject>Windows (apertures)</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwicYGDYe3YcXxE5VeqxAXOlpPYrUtqFzuVmrcnJZV647TSaGZ290PomsA9ARAPiYAUBAMFDJwKivkJmhAucsxKVpyiCUhaYhAgztFFSisA4IyICfJPDm-j0VkdQ0q4df7bNFlybdhpb7JlX0XXZGvdmeh0mzLn6xA3IerO-UUWWrcIt2HXb2LY9K3x5i7Tvjnqplse5HqpnU-X6MwONebqMKfo6-X5c_aG5x-v77PHOa5zXnRYNLrR0trSSGZowaqKVITbosp1aQpuLaNlXWoJRUNFYXJNwRJGrZWllJyafIpuxt7hsJ-tSZ1ahW30w0pFWc5yCSXjg4uOrr_no7FqE91ax14RUHuuauSqBq7qj6vah_IxlAazX5h4rP4n9Qs4UX2c</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Nunes, S. C.</creator><creator>Fernandes, M.</creator><creator>Gonçalves, H. M. R.</creator><creator>Serrano, J. L.</creator><creator>Almeida, P.</creator><creator>Bermudez, V. de Zea</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200901</creationdate><title>Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains</title><author>Nunes, S. C. ; Fernandes, M. ; Gonçalves, H. M. R. ; Serrano, J. L. ; Almeida, P. ; Bermudez, V. de Zea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7dada9ff8e94e264bb1b15f6b3a8e65ff428c8a906d276e3a20f142ff989952e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphous materials</topic><topic>Bonding strength</topic><topic>Ceramics</topic><topic>Chains</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crosslinking</topic><topic>Electrochromic cells</topic><topic>Electrochromism</topic><topic>Glass</topic><topic>hybrids and solution chemistries</topic><topic>Hydrogen bonding</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Micropatterning</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Review Paper: Sol-gel</topic><topic>Silicon</topic><topic>Siloxanes</topic><topic>Smart materials</topic><topic>Sol-gel processes</topic><topic>Substrates</topic><topic>Substructures</topic><topic>Synthesis</topic><topic>Ureas</topic><topic>Windows (apertures)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunes, S. C.</creatorcontrib><creatorcontrib>Fernandes, M.</creatorcontrib><creatorcontrib>Gonçalves, H. M. R.</creatorcontrib><creatorcontrib>Serrano, J. L.</creatorcontrib><creatorcontrib>Almeida, P.</creatorcontrib><creatorcontrib>Bermudez, V. de Zea</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunes, S. C.</au><au>Fernandes, M.</au><au>Gonçalves, H. M. R.</au><au>Serrano, J. L.</au><au>Almeida, P.</au><au>Bermudez, V. de Zea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>95</volume><issue>3</issue><spage>620</spage><epage>634</epage><pages>620-634</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Novel bridged silsesquioxanes (BSs) incorporating short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links were synthesized by the sol–gel process from the organosilane precursors (CH
3
CH
2
O)
3
-Si-(CH
2
)
3
-NHC(=O)NH-R-NH(O=C)NH-(CH
2
)
3
-Si-(OCH
2
CH
3
)
3
, with R≡-[CH(CH
3
)CH
2
O]
x
CH
2
CH(CH
3
)- (x∼2.5 and 6.1) or R≡-(CH
2
)
2
O(CH
2
)
2
O(CH
2
)
2
-, respectively. The new BSs were identified by the notations d-U′(
Y
′) with
Y
′ = 400 and 230, and d-U(
Y
) with
Y
= 148, where d stands for di, and U/U′ denote the urea group. The hybrid materials were produced as transparent, amorphous, homogeneous, and soft monoliths, although d-U(148) presented some rigidity. In the three samples the siliceous framework is mainly composed of [–(CH
2
)Si(OSi)
3
] and [–(CH
2
)Si(OSi)
2
(OH)] substructures. The highest polycondensation degree of the siloxane network was found in the case of d-U′(400), pointing out the formation of a three dimensional framework. In the three materials the urea groups are extensively involved in the formation of strong ordered urea-urea hydrogen-bonded aggregates of different degree of order. The d-U′(230) BS is a promising candidate as mold material for micropatterning applications aiming the fabrication of smart coatings. The prospects for these materials in flexible electrochromic devices for smart windows, where they can act as outermost substrates, are also excellent.
Highlights
Amorphous, transparent, and homogenous bridged silsesquioxanes (BSs) were synthesized by the sol–gel process.
The materials incorporate short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links.
The BS incorporating the shortest oligo(oxypropylene) chains exhibit micropatterning ability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-020-05272-5</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2020-09, Vol.95 (3), p.620-634 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_journals_2434390845 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amorphous materials Bonding strength Ceramics Chains Chemistry and Materials Science Composites Crosslinking Electrochromic cells Electrochromism Glass hybrids and solution chemistries Hydrogen bonding Inorganic Chemistry Materials Science Micropatterning Nanotechnology Natural Materials Optical and Electronic Materials Review Paper: Sol-gel Silicon Siloxanes Smart materials Sol-gel processes Substrates Substructures Synthesis Ureas Windows (apertures) |
title | Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Di-urea%20cross-linked%20siloxane%20hybrid%20materials%20incorporating%20oligo(oxypropylene)%20and%20oligo(oxyethylene)%20chains&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Nunes,%20S.%20C.&rft.date=2020-09-01&rft.volume=95&rft.issue=3&rft.spage=620&rft.epage=634&rft.pages=620-634&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-020-05272-5&rft_dat=%3Cproquest_cross%3E2434390845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434390845&rft_id=info:pmid/&rfr_iscdi=true |