Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains

Novel bridged silsesquioxanes (BSs) incorporating short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links were synthesized by the sol–gel process from the organosilane precursors (CH 3 CH 2 O) 3 -Si-(CH 2 ) 3 -NHC(=O)NH-R-NH(O=C)NH-(CH 2 ) 3 -Si-(OCH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2020-09, Vol.95 (3), p.620-634
Hauptverfasser: Nunes, S. C., Fernandes, M., Gonçalves, H. M. R., Serrano, J. L., Almeida, P., Bermudez, V. de Zea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 3
container_start_page 620
container_title Journal of sol-gel science and technology
container_volume 95
creator Nunes, S. C.
Fernandes, M.
Gonçalves, H. M. R.
Serrano, J. L.
Almeida, P.
Bermudez, V. de Zea
description Novel bridged silsesquioxanes (BSs) incorporating short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links were synthesized by the sol–gel process from the organosilane precursors (CH 3 CH 2 O) 3 -Si-(CH 2 ) 3 -NHC(=O)NH-R-NH(O=C)NH-(CH 2 ) 3 -Si-(OCH 2 CH 3 ) 3 , with R≡-[CH(CH 3 )CH 2 O] x CH 2 CH(CH 3 )- (x∼2.5 and 6.1) or R≡-(CH 2 ) 2 O(CH 2 ) 2 O(CH 2 ) 2 -, respectively. The new BSs were identified by the notations d-U′( Y ′) with Y ′ = 400 and 230, and d-U( Y ) with Y  = 148, where d stands for di, and U/U′ denote the urea group. The hybrid materials were produced as transparent, amorphous, homogeneous, and soft monoliths, although d-U(148) presented some rigidity. In the three samples the siliceous framework is mainly composed of [–(CH 2 )Si(OSi) 3 ] and [–(CH 2 )Si(OSi) 2 (OH)] substructures. The highest polycondensation degree of the siloxane network was found in the case of d-U′(400), pointing out the formation of a three dimensional framework. In the three materials the urea groups are extensively involved in the formation of strong ordered urea-urea hydrogen-bonded aggregates of different degree of order. The d-U′(230) BS is a promising candidate as mold material for micropatterning applications aiming the fabrication of smart coatings. The prospects for these materials in flexible electrochromic devices for smart windows, where they can act as outermost substrates, are also excellent. Highlights Amorphous, transparent, and homogenous bridged silsesquioxanes (BSs) were synthesized by the sol–gel process. The materials incorporate short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links. The BS incorporating the shortest oligo(oxypropylene) chains exhibit micropatterning ability.
doi_str_mv 10.1007/s10971-020-05272-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434390845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434390845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7dada9ff8e94e264bb1b15f6b3a8e65ff428c8a906d276e3a20f142ff989952e3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicYGDYe3YcXxE5VeqxAXOlpPYrUtqFzuVmrcnJZV647TSaGZ290PomsA9ARAPiYAUBAMFDJwKivkJmhAucsxKVpyiCUhaYhAgztFFSisA4IyICfJPDm-j0VkdQ0q4df7bNFlybdhpb7JlX0XXZGvdmeh0mzLn6xA3IerO-UUWWrcIt2HXb2LY9K3x5i7Tvjnqplse5HqpnU-X6MwONebqMKfo6-X5c_aG5x-v77PHOa5zXnRYNLrR0trSSGZowaqKVITbosp1aQpuLaNlXWoJRUNFYXJNwRJGrZWllJyafIpuxt7hsJ-tSZ1ahW30w0pFWc5yCSXjg4uOrr_no7FqE91ax14RUHuuauSqBq7qj6vah_IxlAazX5h4rP4n9Qs4UX2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434390845</pqid></control><display><type>article</type><title>Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nunes, S. C. ; Fernandes, M. ; Gonçalves, H. M. R. ; Serrano, J. L. ; Almeida, P. ; Bermudez, V. de Zea</creator><creatorcontrib>Nunes, S. C. ; Fernandes, M. ; Gonçalves, H. M. R. ; Serrano, J. L. ; Almeida, P. ; Bermudez, V. de Zea</creatorcontrib><description>Novel bridged silsesquioxanes (BSs) incorporating short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links were synthesized by the sol–gel process from the organosilane precursors (CH 3 CH 2 O) 3 -Si-(CH 2 ) 3 -NHC(=O)NH-R-NH(O=C)NH-(CH 2 ) 3 -Si-(OCH 2 CH 3 ) 3 , with R≡-[CH(CH 3 )CH 2 O] x CH 2 CH(CH 3 )- (x∼2.5 and 6.1) or R≡-(CH 2 ) 2 O(CH 2 ) 2 O(CH 2 ) 2 -, respectively. The new BSs were identified by the notations d-U′( Y ′) with Y ′ = 400 and 230, and d-U( Y ) with Y  = 148, where d stands for di, and U/U′ denote the urea group. The hybrid materials were produced as transparent, amorphous, homogeneous, and soft monoliths, although d-U(148) presented some rigidity. In the three samples the siliceous framework is mainly composed of [–(CH 2 )Si(OSi) 3 ] and [–(CH 2 )Si(OSi) 2 (OH)] substructures. The highest polycondensation degree of the siloxane network was found in the case of d-U′(400), pointing out the formation of a three dimensional framework. In the three materials the urea groups are extensively involved in the formation of strong ordered urea-urea hydrogen-bonded aggregates of different degree of order. The d-U′(230) BS is a promising candidate as mold material for micropatterning applications aiming the fabrication of smart coatings. The prospects for these materials in flexible electrochromic devices for smart windows, where they can act as outermost substrates, are also excellent. Highlights Amorphous, transparent, and homogenous bridged silsesquioxanes (BSs) were synthesized by the sol–gel process. The materials incorporate short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links. The BS incorporating the shortest oligo(oxypropylene) chains exhibit micropatterning ability.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-020-05272-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amorphous materials ; Bonding strength ; Ceramics ; Chains ; Chemistry and Materials Science ; Composites ; Crosslinking ; Electrochromic cells ; Electrochromism ; Glass ; hybrids and solution chemistries ; Hydrogen bonding ; Inorganic Chemistry ; Materials Science ; Micropatterning ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Review Paper: Sol-gel ; Silicon ; Siloxanes ; Smart materials ; Sol-gel processes ; Substrates ; Substructures ; Synthesis ; Ureas ; Windows (apertures)</subject><ispartof>Journal of sol-gel science and technology, 2020-09, Vol.95 (3), p.620-634</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7dada9ff8e94e264bb1b15f6b3a8e65ff428c8a906d276e3a20f142ff989952e3</citedby><cites>FETCH-LOGICAL-c356t-7dada9ff8e94e264bb1b15f6b3a8e65ff428c8a906d276e3a20f142ff989952e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-020-05272-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-020-05272-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nunes, S. C.</creatorcontrib><creatorcontrib>Fernandes, M.</creatorcontrib><creatorcontrib>Gonçalves, H. M. R.</creatorcontrib><creatorcontrib>Serrano, J. L.</creatorcontrib><creatorcontrib>Almeida, P.</creatorcontrib><creatorcontrib>Bermudez, V. de Zea</creatorcontrib><title>Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Novel bridged silsesquioxanes (BSs) incorporating short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links were synthesized by the sol–gel process from the organosilane precursors (CH 3 CH 2 O) 3 -Si-(CH 2 ) 3 -NHC(=O)NH-R-NH(O=C)NH-(CH 2 ) 3 -Si-(OCH 2 CH 3 ) 3 , with R≡-[CH(CH 3 )CH 2 O] x CH 2 CH(CH 3 )- (x∼2.5 and 6.1) or R≡-(CH 2 ) 2 O(CH 2 ) 2 O(CH 2 ) 2 -, respectively. The new BSs were identified by the notations d-U′( Y ′) with Y ′ = 400 and 230, and d-U( Y ) with Y  = 148, where d stands for di, and U/U′ denote the urea group. The hybrid materials were produced as transparent, amorphous, homogeneous, and soft monoliths, although d-U(148) presented some rigidity. In the three samples the siliceous framework is mainly composed of [–(CH 2 )Si(OSi) 3 ] and [–(CH 2 )Si(OSi) 2 (OH)] substructures. The highest polycondensation degree of the siloxane network was found in the case of d-U′(400), pointing out the formation of a three dimensional framework. In the three materials the urea groups are extensively involved in the formation of strong ordered urea-urea hydrogen-bonded aggregates of different degree of order. The d-U′(230) BS is a promising candidate as mold material for micropatterning applications aiming the fabrication of smart coatings. The prospects for these materials in flexible electrochromic devices for smart windows, where they can act as outermost substrates, are also excellent. Highlights Amorphous, transparent, and homogenous bridged silsesquioxanes (BSs) were synthesized by the sol–gel process. The materials incorporate short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links. The BS incorporating the shortest oligo(oxypropylene) chains exhibit micropatterning ability.</description><subject>Amorphous materials</subject><subject>Bonding strength</subject><subject>Ceramics</subject><subject>Chains</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crosslinking</subject><subject>Electrochromic cells</subject><subject>Electrochromism</subject><subject>Glass</subject><subject>hybrids and solution chemistries</subject><subject>Hydrogen bonding</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Micropatterning</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Review Paper: Sol-gel</subject><subject>Silicon</subject><subject>Siloxanes</subject><subject>Smart materials</subject><subject>Sol-gel processes</subject><subject>Substrates</subject><subject>Substructures</subject><subject>Synthesis</subject><subject>Ureas</subject><subject>Windows (apertures)</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwicYGDYe3YcXxE5VeqxAXOlpPYrUtqFzuVmrcnJZV647TSaGZ290PomsA9ARAPiYAUBAMFDJwKivkJmhAucsxKVpyiCUhaYhAgztFFSisA4IyICfJPDm-j0VkdQ0q4df7bNFlybdhpb7JlX0XXZGvdmeh0mzLn6xA3IerO-UUWWrcIt2HXb2LY9K3x5i7Tvjnqplse5HqpnU-X6MwONebqMKfo6-X5c_aG5x-v77PHOa5zXnRYNLrR0trSSGZowaqKVITbosp1aQpuLaNlXWoJRUNFYXJNwRJGrZWllJyafIpuxt7hsJ-tSZ1ahW30w0pFWc5yCSXjg4uOrr_no7FqE91ax14RUHuuauSqBq7qj6vah_IxlAazX5h4rP4n9Qs4UX2c</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Nunes, S. C.</creator><creator>Fernandes, M.</creator><creator>Gonçalves, H. M. R.</creator><creator>Serrano, J. L.</creator><creator>Almeida, P.</creator><creator>Bermudez, V. de Zea</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200901</creationdate><title>Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains</title><author>Nunes, S. C. ; Fernandes, M. ; Gonçalves, H. M. R. ; Serrano, J. L. ; Almeida, P. ; Bermudez, V. de Zea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7dada9ff8e94e264bb1b15f6b3a8e65ff428c8a906d276e3a20f142ff989952e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphous materials</topic><topic>Bonding strength</topic><topic>Ceramics</topic><topic>Chains</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crosslinking</topic><topic>Electrochromic cells</topic><topic>Electrochromism</topic><topic>Glass</topic><topic>hybrids and solution chemistries</topic><topic>Hydrogen bonding</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Micropatterning</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Review Paper: Sol-gel</topic><topic>Silicon</topic><topic>Siloxanes</topic><topic>Smart materials</topic><topic>Sol-gel processes</topic><topic>Substrates</topic><topic>Substructures</topic><topic>Synthesis</topic><topic>Ureas</topic><topic>Windows (apertures)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunes, S. C.</creatorcontrib><creatorcontrib>Fernandes, M.</creatorcontrib><creatorcontrib>Gonçalves, H. M. R.</creatorcontrib><creatorcontrib>Serrano, J. L.</creatorcontrib><creatorcontrib>Almeida, P.</creatorcontrib><creatorcontrib>Bermudez, V. de Zea</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunes, S. C.</au><au>Fernandes, M.</au><au>Gonçalves, H. M. R.</au><au>Serrano, J. L.</au><au>Almeida, P.</au><au>Bermudez, V. de Zea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>95</volume><issue>3</issue><spage>620</spage><epage>634</epage><pages>620-634</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Novel bridged silsesquioxanes (BSs) incorporating short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links were synthesized by the sol–gel process from the organosilane precursors (CH 3 CH 2 O) 3 -Si-(CH 2 ) 3 -NHC(=O)NH-R-NH(O=C)NH-(CH 2 ) 3 -Si-(OCH 2 CH 3 ) 3 , with R≡-[CH(CH 3 )CH 2 O] x CH 2 CH(CH 3 )- (x∼2.5 and 6.1) or R≡-(CH 2 ) 2 O(CH 2 ) 2 O(CH 2 ) 2 -, respectively. The new BSs were identified by the notations d-U′( Y ′) with Y ′ = 400 and 230, and d-U( Y ) with Y  = 148, where d stands for di, and U/U′ denote the urea group. The hybrid materials were produced as transparent, amorphous, homogeneous, and soft monoliths, although d-U(148) presented some rigidity. In the three samples the siliceous framework is mainly composed of [–(CH 2 )Si(OSi) 3 ] and [–(CH 2 )Si(OSi) 2 (OH)] substructures. The highest polycondensation degree of the siloxane network was found in the case of d-U′(400), pointing out the formation of a three dimensional framework. In the three materials the urea groups are extensively involved in the formation of strong ordered urea-urea hydrogen-bonded aggregates of different degree of order. The d-U′(230) BS is a promising candidate as mold material for micropatterning applications aiming the fabrication of smart coatings. The prospects for these materials in flexible electrochromic devices for smart windows, where they can act as outermost substrates, are also excellent. Highlights Amorphous, transparent, and homogenous bridged silsesquioxanes (BSs) were synthesized by the sol–gel process. The materials incorporate short oligo(oxypropylene) or oligo(oxyethylene) chains bonded to a siliceous network via urea cross-links. The BS incorporating the shortest oligo(oxypropylene) chains exhibit micropatterning ability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-020-05272-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2020-09, Vol.95 (3), p.620-634
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_journals_2434390845
source SpringerLink Journals - AutoHoldings
subjects Amorphous materials
Bonding strength
Ceramics
Chains
Chemistry and Materials Science
Composites
Crosslinking
Electrochromic cells
Electrochromism
Glass
hybrids and solution chemistries
Hydrogen bonding
Inorganic Chemistry
Materials Science
Micropatterning
Nanotechnology
Natural Materials
Optical and Electronic Materials
Review Paper: Sol-gel
Silicon
Siloxanes
Smart materials
Sol-gel processes
Substrates
Substructures
Synthesis
Ureas
Windows (apertures)
title Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Di-urea%20cross-linked%20siloxane%20hybrid%20materials%20incorporating%20oligo(oxypropylene)%20and%20oligo(oxyethylene)%20chains&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Nunes,%20S.%20C.&rft.date=2020-09-01&rft.volume=95&rft.issue=3&rft.spage=620&rft.epage=634&rft.pages=620-634&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-020-05272-5&rft_dat=%3Cproquest_cross%3E2434390845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434390845&rft_id=info:pmid/&rfr_iscdi=true