Camera pose estimation based on global structure from motion

In this paper, a new global camera pose estimation algorithm WTLS-IRLS is proposed, which can effectively solve the global rotation when there are outliers. Firstly, according to the relationship between the rotation vector and the rotation matrix, we simplify the product operation of the rotation m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-08, Vol.79 (31-32), p.23223-23242
Hauptverfasser: Li, Dan, Song, Danya, Liu, Shuang, Ji, Junwen, Zeng, Kang, Hu, Yingsong, Ling, Hefei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23242
container_issue 31-32
container_start_page 23223
container_title Multimedia tools and applications
container_volume 79
creator Li, Dan
Song, Danya
Liu, Shuang
Ji, Junwen
Zeng, Kang
Hu, Yingsong
Ling, Hefei
description In this paper, a new global camera pose estimation algorithm WTLS-IRLS is proposed, which can effectively solve the global rotation when there are outliers. Firstly, according to the relationship between the rotation vector and the rotation matrix, we simplify the product operation of the rotation matrix into the subtraction operation of the rotation vector, which reduces the complexity of the algorithm. Secondly, the weighted total least squares (WTLS) and the iteratively reweighted least squares (IRLS) are used to average relative rotations. As the initialization of IRLS, WTLS provides a good initial guess by correcting the linearization equation and adding weight information to the relative rotations. IRLS continues to add weight information to the relative rotation matrices to optimize the global rotations. We demonstrate the performance of our approach by a number of large-scale data sets, the results show that our method has been greatly improved in efficiency, accuracy and iteration. In order to verify the correctness of our proposed method, we completed the complete reconstruction process, the experimental results show that our proposed WTLS-IRLS rotation averaging algorithm can obtain dense point clouds with more three-dimensional points.
doi_str_mv 10.1007/s11042-020-09045-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434390808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434390808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f5865042d600b52be859498941209a029ea014233a7fa4b099782c9bb3537e5d3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbV5OAGym-YMCNrkPSpsMM7WRM2oX_3tQK7lzdszjn3Hs_hK4p3FIAdZcpBcEIMCBgQEiiT9CKSsWJUoyeFs01ECWBnqOLnPcAtJJMrNB97YaQHD7GHHDI425w4y4esHc5tLiIbR-963Ee09SMUwq4S3HAQ5xdl-isc30OV79zjT6eHt_rF7J5e36tHzak4dSMpJO6kuW8tgLwkvmgpRFGG0EZGAfMBAdUMM6d6pzwYIzSrDHec8lVkC1fo5ul95ji51SutPs4pUNZaZngghvQoIuLLa4mxZxT6OwxlXfSl6VgZ0p2oWQLJftDyc4hvoRyMR-2If1V_5P6BuA5aDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434390808</pqid></control><display><type>article</type><title>Camera pose estimation based on global structure from motion</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Dan ; Song, Danya ; Liu, Shuang ; Ji, Junwen ; Zeng, Kang ; Hu, Yingsong ; Ling, Hefei</creator><creatorcontrib>Li, Dan ; Song, Danya ; Liu, Shuang ; Ji, Junwen ; Zeng, Kang ; Hu, Yingsong ; Ling, Hefei</creatorcontrib><description>In this paper, a new global camera pose estimation algorithm WTLS-IRLS is proposed, which can effectively solve the global rotation when there are outliers. Firstly, according to the relationship between the rotation vector and the rotation matrix, we simplify the product operation of the rotation matrix into the subtraction operation of the rotation vector, which reduces the complexity of the algorithm. Secondly, the weighted total least squares (WTLS) and the iteratively reweighted least squares (IRLS) are used to average relative rotations. As the initialization of IRLS, WTLS provides a good initial guess by correcting the linearization equation and adding weight information to the relative rotations. IRLS continues to add weight information to the relative rotation matrices to optimize the global rotations. We demonstrate the performance of our approach by a number of large-scale data sets, the results show that our method has been greatly improved in efficiency, accuracy and iteration. In order to verify the correctness of our proposed method, we completed the complete reconstruction process, the experimental results show that our proposed WTLS-IRLS rotation averaging algorithm can obtain dense point clouds with more three-dimensional points.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09045-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cameras ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Least squares ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Multimedia Information Systems ; Outliers (statistics) ; Pose estimation ; Rotation ; Special Purpose and Application-Based Systems ; Subtraction ; Weight</subject><ispartof>Multimedia tools and applications, 2020-08, Vol.79 (31-32), p.23223-23242</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f5865042d600b52be859498941209a029ea014233a7fa4b099782c9bb3537e5d3</citedby><cites>FETCH-LOGICAL-c319t-f5865042d600b52be859498941209a029ea014233a7fa4b099782c9bb3537e5d3</cites><orcidid>0000-0003-4901-6639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09045-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09045-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Song, Danya</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Ji, Junwen</creatorcontrib><creatorcontrib>Zeng, Kang</creatorcontrib><creatorcontrib>Hu, Yingsong</creatorcontrib><creatorcontrib>Ling, Hefei</creatorcontrib><title>Camera pose estimation based on global structure from motion</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, a new global camera pose estimation algorithm WTLS-IRLS is proposed, which can effectively solve the global rotation when there are outliers. Firstly, according to the relationship between the rotation vector and the rotation matrix, we simplify the product operation of the rotation matrix into the subtraction operation of the rotation vector, which reduces the complexity of the algorithm. Secondly, the weighted total least squares (WTLS) and the iteratively reweighted least squares (IRLS) are used to average relative rotations. As the initialization of IRLS, WTLS provides a good initial guess by correcting the linearization equation and adding weight information to the relative rotations. IRLS continues to add weight information to the relative rotation matrices to optimize the global rotations. We demonstrate the performance of our approach by a number of large-scale data sets, the results show that our method has been greatly improved in efficiency, accuracy and iteration. In order to verify the correctness of our proposed method, we completed the complete reconstruction process, the experimental results show that our proposed WTLS-IRLS rotation averaging algorithm can obtain dense point clouds with more three-dimensional points.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Least squares</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Multimedia Information Systems</subject><subject>Outliers (statistics)</subject><subject>Pose estimation</subject><subject>Rotation</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Subtraction</subject><subject>Weight</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbV5OAGym-YMCNrkPSpsMM7WRM2oX_3tQK7lzdszjn3Hs_hK4p3FIAdZcpBcEIMCBgQEiiT9CKSsWJUoyeFs01ECWBnqOLnPcAtJJMrNB97YaQHD7GHHDI425w4y4esHc5tLiIbR-963Ee09SMUwq4S3HAQ5xdl-isc30OV79zjT6eHt_rF7J5e36tHzak4dSMpJO6kuW8tgLwkvmgpRFGG0EZGAfMBAdUMM6d6pzwYIzSrDHec8lVkC1fo5ul95ji51SutPs4pUNZaZngghvQoIuLLa4mxZxT6OwxlXfSl6VgZ0p2oWQLJftDyc4hvoRyMR-2If1V_5P6BuA5aDI</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Li, Dan</creator><creator>Song, Danya</creator><creator>Liu, Shuang</creator><creator>Ji, Junwen</creator><creator>Zeng, Kang</creator><creator>Hu, Yingsong</creator><creator>Ling, Hefei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4901-6639</orcidid></search><sort><creationdate>20200801</creationdate><title>Camera pose estimation based on global structure from motion</title><author>Li, Dan ; Song, Danya ; Liu, Shuang ; Ji, Junwen ; Zeng, Kang ; Hu, Yingsong ; Ling, Hefei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f5865042d600b52be859498941209a029ea014233a7fa4b099782c9bb3537e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Least squares</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Multimedia Information Systems</topic><topic>Outliers (statistics)</topic><topic>Pose estimation</topic><topic>Rotation</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Subtraction</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Song, Danya</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Ji, Junwen</creatorcontrib><creatorcontrib>Zeng, Kang</creatorcontrib><creatorcontrib>Hu, Yingsong</creatorcontrib><creatorcontrib>Ling, Hefei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dan</au><au>Song, Danya</au><au>Liu, Shuang</au><au>Ji, Junwen</au><au>Zeng, Kang</au><au>Hu, Yingsong</au><au>Ling, Hefei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Camera pose estimation based on global structure from motion</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>79</volume><issue>31-32</issue><spage>23223</spage><epage>23242</epage><pages>23223-23242</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, a new global camera pose estimation algorithm WTLS-IRLS is proposed, which can effectively solve the global rotation when there are outliers. Firstly, according to the relationship between the rotation vector and the rotation matrix, we simplify the product operation of the rotation matrix into the subtraction operation of the rotation vector, which reduces the complexity of the algorithm. Secondly, the weighted total least squares (WTLS) and the iteratively reweighted least squares (IRLS) are used to average relative rotations. As the initialization of IRLS, WTLS provides a good initial guess by correcting the linearization equation and adding weight information to the relative rotations. IRLS continues to add weight information to the relative rotation matrices to optimize the global rotations. We demonstrate the performance of our approach by a number of large-scale data sets, the results show that our method has been greatly improved in efficiency, accuracy and iteration. In order to verify the correctness of our proposed method, we completed the complete reconstruction process, the experimental results show that our proposed WTLS-IRLS rotation averaging algorithm can obtain dense point clouds with more three-dimensional points.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09045-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4901-6639</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-08, Vol.79 (31-32), p.23223-23242
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2434390808
source Springer Nature - Complete Springer Journals
subjects Algorithms
Cameras
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Least squares
Mathematical analysis
Matrix algebra
Matrix methods
Multimedia Information Systems
Outliers (statistics)
Pose estimation
Rotation
Special Purpose and Application-Based Systems
Subtraction
Weight
title Camera pose estimation based on global structure from motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Camera%20pose%20estimation%20based%20on%20global%20structure%20from%20motion&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Li,%20Dan&rft.date=2020-08-01&rft.volume=79&rft.issue=31-32&rft.spage=23223&rft.epage=23242&rft.pages=23223-23242&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09045-8&rft_dat=%3Cproquest_cross%3E2434390808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434390808&rft_id=info:pmid/&rfr_iscdi=true