Camera pose estimation based on global structure from motion
In this paper, a new global camera pose estimation algorithm WTLS-IRLS is proposed, which can effectively solve the global rotation when there are outliers. Firstly, according to the relationship between the rotation vector and the rotation matrix, we simplify the product operation of the rotation m...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2020-08, Vol.79 (31-32), p.23223-23242 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23242 |
---|---|
container_issue | 31-32 |
container_start_page | 23223 |
container_title | Multimedia tools and applications |
container_volume | 79 |
creator | Li, Dan Song, Danya Liu, Shuang Ji, Junwen Zeng, Kang Hu, Yingsong Ling, Hefei |
description | In this paper, a new global camera pose estimation algorithm WTLS-IRLS is proposed, which can effectively solve the global rotation when there are outliers. Firstly, according to the relationship between the rotation vector and the rotation matrix, we simplify the product operation of the rotation matrix into the subtraction operation of the rotation vector, which reduces the complexity of the algorithm. Secondly, the weighted total least squares (WTLS) and the iteratively reweighted least squares (IRLS) are used to average relative rotations. As the initialization of IRLS, WTLS provides a good initial guess by correcting the linearization equation and adding weight information to the relative rotations. IRLS continues to add weight information to the relative rotation matrices to optimize the global rotations. We demonstrate the performance of our approach by a number of large-scale data sets, the results show that our method has been greatly improved in efficiency, accuracy and iteration. In order to verify the correctness of our proposed method, we completed the complete reconstruction process, the experimental results show that our proposed WTLS-IRLS rotation averaging algorithm can obtain dense point clouds with more three-dimensional points. |
doi_str_mv | 10.1007/s11042-020-09045-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434390808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434390808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f5865042d600b52be859498941209a029ea014233a7fa4b099782c9bb3537e5d3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbV5OAGym-YMCNrkPSpsMM7WRM2oX_3tQK7lzdszjn3Hs_hK4p3FIAdZcpBcEIMCBgQEiiT9CKSsWJUoyeFs01ECWBnqOLnPcAtJJMrNB97YaQHD7GHHDI425w4y4esHc5tLiIbR-963Ee09SMUwq4S3HAQ5xdl-isc30OV79zjT6eHt_rF7J5e36tHzak4dSMpJO6kuW8tgLwkvmgpRFGG0EZGAfMBAdUMM6d6pzwYIzSrDHec8lVkC1fo5ul95ji51SutPs4pUNZaZngghvQoIuLLa4mxZxT6OwxlXfSl6VgZ0p2oWQLJftDyc4hvoRyMR-2If1V_5P6BuA5aDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434390808</pqid></control><display><type>article</type><title>Camera pose estimation based on global structure from motion</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Dan ; Song, Danya ; Liu, Shuang ; Ji, Junwen ; Zeng, Kang ; Hu, Yingsong ; Ling, Hefei</creator><creatorcontrib>Li, Dan ; Song, Danya ; Liu, Shuang ; Ji, Junwen ; Zeng, Kang ; Hu, Yingsong ; Ling, Hefei</creatorcontrib><description>In this paper, a new global camera pose estimation algorithm WTLS-IRLS is proposed, which can effectively solve the global rotation when there are outliers. Firstly, according to the relationship between the rotation vector and the rotation matrix, we simplify the product operation of the rotation matrix into the subtraction operation of the rotation vector, which reduces the complexity of the algorithm. Secondly, the weighted total least squares (WTLS) and the iteratively reweighted least squares (IRLS) are used to average relative rotations. As the initialization of IRLS, WTLS provides a good initial guess by correcting the linearization equation and adding weight information to the relative rotations. IRLS continues to add weight information to the relative rotation matrices to optimize the global rotations. We demonstrate the performance of our approach by a number of large-scale data sets, the results show that our method has been greatly improved in efficiency, accuracy and iteration. In order to verify the correctness of our proposed method, we completed the complete reconstruction process, the experimental results show that our proposed WTLS-IRLS rotation averaging algorithm can obtain dense point clouds with more three-dimensional points.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-09045-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cameras ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Least squares ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Multimedia Information Systems ; Outliers (statistics) ; Pose estimation ; Rotation ; Special Purpose and Application-Based Systems ; Subtraction ; Weight</subject><ispartof>Multimedia tools and applications, 2020-08, Vol.79 (31-32), p.23223-23242</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f5865042d600b52be859498941209a029ea014233a7fa4b099782c9bb3537e5d3</citedby><cites>FETCH-LOGICAL-c319t-f5865042d600b52be859498941209a029ea014233a7fa4b099782c9bb3537e5d3</cites><orcidid>0000-0003-4901-6639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-09045-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-09045-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Song, Danya</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Ji, Junwen</creatorcontrib><creatorcontrib>Zeng, Kang</creatorcontrib><creatorcontrib>Hu, Yingsong</creatorcontrib><creatorcontrib>Ling, Hefei</creatorcontrib><title>Camera pose estimation based on global structure from motion</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, a new global camera pose estimation algorithm WTLS-IRLS is proposed, which can effectively solve the global rotation when there are outliers. Firstly, according to the relationship between the rotation vector and the rotation matrix, we simplify the product operation of the rotation matrix into the subtraction operation of the rotation vector, which reduces the complexity of the algorithm. Secondly, the weighted total least squares (WTLS) and the iteratively reweighted least squares (IRLS) are used to average relative rotations. As the initialization of IRLS, WTLS provides a good initial guess by correcting the linearization equation and adding weight information to the relative rotations. IRLS continues to add weight information to the relative rotation matrices to optimize the global rotations. We demonstrate the performance of our approach by a number of large-scale data sets, the results show that our method has been greatly improved in efficiency, accuracy and iteration. In order to verify the correctness of our proposed method, we completed the complete reconstruction process, the experimental results show that our proposed WTLS-IRLS rotation averaging algorithm can obtain dense point clouds with more three-dimensional points.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Least squares</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Multimedia Information Systems</subject><subject>Outliers (statistics)</subject><subject>Pose estimation</subject><subject>Rotation</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Subtraction</subject><subject>Weight</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbV5OAGym-YMCNrkPSpsMM7WRM2oX_3tQK7lzdszjn3Hs_hK4p3FIAdZcpBcEIMCBgQEiiT9CKSsWJUoyeFs01ECWBnqOLnPcAtJJMrNB97YaQHD7GHHDI425w4y4esHc5tLiIbR-963Ee09SMUwq4S3HAQ5xdl-isc30OV79zjT6eHt_rF7J5e36tHzak4dSMpJO6kuW8tgLwkvmgpRFGG0EZGAfMBAdUMM6d6pzwYIzSrDHec8lVkC1fo5ul95ji51SutPs4pUNZaZngghvQoIuLLa4mxZxT6OwxlXfSl6VgZ0p2oWQLJftDyc4hvoRyMR-2If1V_5P6BuA5aDI</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Li, Dan</creator><creator>Song, Danya</creator><creator>Liu, Shuang</creator><creator>Ji, Junwen</creator><creator>Zeng, Kang</creator><creator>Hu, Yingsong</creator><creator>Ling, Hefei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4901-6639</orcidid></search><sort><creationdate>20200801</creationdate><title>Camera pose estimation based on global structure from motion</title><author>Li, Dan ; Song, Danya ; Liu, Shuang ; Ji, Junwen ; Zeng, Kang ; Hu, Yingsong ; Ling, Hefei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f5865042d600b52be859498941209a029ea014233a7fa4b099782c9bb3537e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Least squares</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Multimedia Information Systems</topic><topic>Outliers (statistics)</topic><topic>Pose estimation</topic><topic>Rotation</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Subtraction</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Song, Danya</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Ji, Junwen</creatorcontrib><creatorcontrib>Zeng, Kang</creatorcontrib><creatorcontrib>Hu, Yingsong</creatorcontrib><creatorcontrib>Ling, Hefei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dan</au><au>Song, Danya</au><au>Liu, Shuang</au><au>Ji, Junwen</au><au>Zeng, Kang</au><au>Hu, Yingsong</au><au>Ling, Hefei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Camera pose estimation based on global structure from motion</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>79</volume><issue>31-32</issue><spage>23223</spage><epage>23242</epage><pages>23223-23242</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, a new global camera pose estimation algorithm WTLS-IRLS is proposed, which can effectively solve the global rotation when there are outliers. Firstly, according to the relationship between the rotation vector and the rotation matrix, we simplify the product operation of the rotation matrix into the subtraction operation of the rotation vector, which reduces the complexity of the algorithm. Secondly, the weighted total least squares (WTLS) and the iteratively reweighted least squares (IRLS) are used to average relative rotations. As the initialization of IRLS, WTLS provides a good initial guess by correcting the linearization equation and adding weight information to the relative rotations. IRLS continues to add weight information to the relative rotation matrices to optimize the global rotations. We demonstrate the performance of our approach by a number of large-scale data sets, the results show that our method has been greatly improved in efficiency, accuracy and iteration. In order to verify the correctness of our proposed method, we completed the complete reconstruction process, the experimental results show that our proposed WTLS-IRLS rotation averaging algorithm can obtain dense point clouds with more three-dimensional points.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-09045-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4901-6639</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2020-08, Vol.79 (31-32), p.23223-23242 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2434390808 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Cameras Computer Communication Networks Computer Science Data Structures and Information Theory Least squares Mathematical analysis Matrix algebra Matrix methods Multimedia Information Systems Outliers (statistics) Pose estimation Rotation Special Purpose and Application-Based Systems Subtraction Weight |
title | Camera pose estimation based on global structure from motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Camera%20pose%20estimation%20based%20on%20global%20structure%20from%20motion&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Li,%20Dan&rft.date=2020-08-01&rft.volume=79&rft.issue=31-32&rft.spage=23223&rft.epage=23242&rft.pages=23223-23242&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-09045-8&rft_dat=%3Cproquest_cross%3E2434390808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434390808&rft_id=info:pmid/&rfr_iscdi=true |