Encapsulation of [bmim+][Tf2N−] in different ZIF-8 metal analogues and evaluation of their CO2 selectivity over CH4 and N2 using molecular simulation

Zeolitic imidazolate frameworks (ZIFs), a subfamily of metal–organic frameworks (MOFs), are considered as candidates for the development of energy-efficient and high-performing gas separation processes based on nanoporous materials. A recently reported class of hybrid materials, which consist of ion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular systems design & engineering 2020-01, Vol.5 (7), p.1230-1238
Hauptverfasser: Mohamed, Amro M O, Krokidas, Panagiotis, Economou, Ioannis G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1238
container_issue 7
container_start_page 1230
container_title Molecular systems design & engineering
container_volume 5
creator Mohamed, Amro M O
Krokidas, Panagiotis
Economou, Ioannis G
description Zeolitic imidazolate frameworks (ZIFs), a subfamily of metal–organic frameworks (MOFs), are considered as candidates for the development of energy-efficient and high-performing gas separation processes based on nanoporous materials. A recently reported class of hybrid materials, which consist of ionic liquid (IL) pairs encapsulated in the cages of ZIFs (namely IL@ZIFs), has revealed exceptional CO2 selectivity. Herein, we investigate the effect of the metal center type of the framework on the performance of IL@ZIFs, exclusively using computational methods. We use the highly studied ZIF-8 and prepare metal variants, by replacing the original metal Zn2+ with Co2+, Be2+ and Cd2+. For each ZIF-8 metal analogue, we prepare IL@ZIFs of varying IL composition, by introducing methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim+][Tf2N−]) in the ZIF cages. With the use of Monte Carlo simulations, we evaluate the selectivity of both the pristine ZIF-8 metal analogues and the IL@ZIF-8 metal analogues for CO2/CH4 and CO2/N2 mixtures. Our results show that metal variation affects the ZIF performance. Moreover, the IL composition affects the performance; for each IL@ZIF-8 case, there is an optimum IL composition that ensures maximum selectivity for the two mixtures. In an effort to facilitate the evaluation of the IL composition-related performance, we use the available pore volume (APV) parameter. Our analysis reveals that there is a common APV value among all IL@ZIF-8 analogues that dictates the optimum separation performance for both CO2/CH4 and CO2/N2 mixtures. This finding can help towards a better understanding of the design and preparation of these materials.
doi_str_mv 10.1039/d0me00021c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2434387161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434387161</sourcerecordid><originalsourceid>FETCH-proquest_journals_24343871613</originalsourceid><addsrcrecordid>eNqNjr1KA0EUhQdBMGgan-CCpazOzG7W2TokJE1sUhlCGHfvxgnzE-dnwTewtsn7-SQOEqyt7uFwzrkfIbeMPjBaNo8dNUgp5ay9ICNOJ6JoatFckXEIh-yzWtR8Uo_IaWZbeQxJy6icBdfD5tUoc7_drHu--v782oKy0Km-R482wstyXggwGKUGaaV2-4Qhqw5wkDr9rcQ3VB6mzxwCamyjGlT8ADdgNhfVb2HFIQVl92BcTmQCD0GZM8kNueylDjg-32tyN5-tp4vi6N17fhl3B5d8Bgg7XpVVKZ5Yzcr_pX4A2Spc3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434387161</pqid></control><display><type>article</type><title>Encapsulation of [bmim+][Tf2N−] in different ZIF-8 metal analogues and evaluation of their CO2 selectivity over CH4 and N2 using molecular simulation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Mohamed, Amro M O ; Krokidas, Panagiotis ; Economou, Ioannis G</creator><creatorcontrib>Mohamed, Amro M O ; Krokidas, Panagiotis ; Economou, Ioannis G</creatorcontrib><description>Zeolitic imidazolate frameworks (ZIFs), a subfamily of metal–organic frameworks (MOFs), are considered as candidates for the development of energy-efficient and high-performing gas separation processes based on nanoporous materials. A recently reported class of hybrid materials, which consist of ionic liquid (IL) pairs encapsulated in the cages of ZIFs (namely IL@ZIFs), has revealed exceptional CO2 selectivity. Herein, we investigate the effect of the metal center type of the framework on the performance of IL@ZIFs, exclusively using computational methods. We use the highly studied ZIF-8 and prepare metal variants, by replacing the original metal Zn2+ with Co2+, Be2+ and Cd2+. For each ZIF-8 metal analogue, we prepare IL@ZIFs of varying IL composition, by introducing methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim+][Tf2N−]) in the ZIF cages. With the use of Monte Carlo simulations, we evaluate the selectivity of both the pristine ZIF-8 metal analogues and the IL@ZIF-8 metal analogues for CO2/CH4 and CO2/N2 mixtures. Our results show that metal variation affects the ZIF performance. Moreover, the IL composition affects the performance; for each IL@ZIF-8 case, there is an optimum IL composition that ensures maximum selectivity for the two mixtures. In an effort to facilitate the evaluation of the IL composition-related performance, we use the available pore volume (APV) parameter. Our analysis reveals that there is a common APV value among all IL@ZIF-8 analogues that dictates the optimum separation performance for both CO2/CH4 and CO2/N2 mixtures. This finding can help towards a better understanding of the design and preparation of these materials.</description><identifier>EISSN: 2058-9689</identifier><identifier>DOI: 10.1039/d0me00021c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cages ; Carbon dioxide ; Cobalt ; Composition ; Computer simulation ; Data points ; Encapsulation ; Gas separation ; Ionic liquids ; Metal-organic frameworks ; Methane ; Monte Carlo simulation ; Parameters ; Selectivity ; Sorption ; Zeolites</subject><ispartof>Molecular systems design &amp; engineering, 2020-01, Vol.5 (7), p.1230-1238</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mohamed, Amro M O</creatorcontrib><creatorcontrib>Krokidas, Panagiotis</creatorcontrib><creatorcontrib>Economou, Ioannis G</creatorcontrib><title>Encapsulation of [bmim+][Tf2N−] in different ZIF-8 metal analogues and evaluation of their CO2 selectivity over CH4 and N2 using molecular simulation</title><title>Molecular systems design &amp; engineering</title><description>Zeolitic imidazolate frameworks (ZIFs), a subfamily of metal–organic frameworks (MOFs), are considered as candidates for the development of energy-efficient and high-performing gas separation processes based on nanoporous materials. A recently reported class of hybrid materials, which consist of ionic liquid (IL) pairs encapsulated in the cages of ZIFs (namely IL@ZIFs), has revealed exceptional CO2 selectivity. Herein, we investigate the effect of the metal center type of the framework on the performance of IL@ZIFs, exclusively using computational methods. We use the highly studied ZIF-8 and prepare metal variants, by replacing the original metal Zn2+ with Co2+, Be2+ and Cd2+. For each ZIF-8 metal analogue, we prepare IL@ZIFs of varying IL composition, by introducing methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim+][Tf2N−]) in the ZIF cages. With the use of Monte Carlo simulations, we evaluate the selectivity of both the pristine ZIF-8 metal analogues and the IL@ZIF-8 metal analogues for CO2/CH4 and CO2/N2 mixtures. Our results show that metal variation affects the ZIF performance. Moreover, the IL composition affects the performance; for each IL@ZIF-8 case, there is an optimum IL composition that ensures maximum selectivity for the two mixtures. In an effort to facilitate the evaluation of the IL composition-related performance, we use the available pore volume (APV) parameter. Our analysis reveals that there is a common APV value among all IL@ZIF-8 analogues that dictates the optimum separation performance for both CO2/CH4 and CO2/N2 mixtures. This finding can help towards a better understanding of the design and preparation of these materials.</description><subject>Cages</subject><subject>Carbon dioxide</subject><subject>Cobalt</subject><subject>Composition</subject><subject>Computer simulation</subject><subject>Data points</subject><subject>Encapsulation</subject><subject>Gas separation</subject><subject>Ionic liquids</subject><subject>Metal-organic frameworks</subject><subject>Methane</subject><subject>Monte Carlo simulation</subject><subject>Parameters</subject><subject>Selectivity</subject><subject>Sorption</subject><subject>Zeolites</subject><issn>2058-9689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjr1KA0EUhQdBMGgan-CCpazOzG7W2TokJE1sUhlCGHfvxgnzE-dnwTewtsn7-SQOEqyt7uFwzrkfIbeMPjBaNo8dNUgp5ay9ICNOJ6JoatFckXEIh-yzWtR8Uo_IaWZbeQxJy6icBdfD5tUoc7_drHu--v782oKy0Km-R482wstyXggwGKUGaaV2-4Qhqw5wkDr9rcQ3VB6mzxwCamyjGlT8ADdgNhfVb2HFIQVl92BcTmQCD0GZM8kNueylDjg-32tyN5-tp4vi6N17fhl3B5d8Bgg7XpVVKZ5Yzcr_pX4A2Spc3g</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Mohamed, Amro M O</creator><creator>Krokidas, Panagiotis</creator><creator>Economou, Ioannis G</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200101</creationdate><title>Encapsulation of [bmim+][Tf2N−] in different ZIF-8 metal analogues and evaluation of their CO2 selectivity over CH4 and N2 using molecular simulation</title><author>Mohamed, Amro M O ; Krokidas, Panagiotis ; Economou, Ioannis G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24343871613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cages</topic><topic>Carbon dioxide</topic><topic>Cobalt</topic><topic>Composition</topic><topic>Computer simulation</topic><topic>Data points</topic><topic>Encapsulation</topic><topic>Gas separation</topic><topic>Ionic liquids</topic><topic>Metal-organic frameworks</topic><topic>Methane</topic><topic>Monte Carlo simulation</topic><topic>Parameters</topic><topic>Selectivity</topic><topic>Sorption</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Amro M O</creatorcontrib><creatorcontrib>Krokidas, Panagiotis</creatorcontrib><creatorcontrib>Economou, Ioannis G</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Molecular systems design &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Amro M O</au><au>Krokidas, Panagiotis</au><au>Economou, Ioannis G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encapsulation of [bmim+][Tf2N−] in different ZIF-8 metal analogues and evaluation of their CO2 selectivity over CH4 and N2 using molecular simulation</atitle><jtitle>Molecular systems design &amp; engineering</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>5</volume><issue>7</issue><spage>1230</spage><epage>1238</epage><pages>1230-1238</pages><eissn>2058-9689</eissn><abstract>Zeolitic imidazolate frameworks (ZIFs), a subfamily of metal–organic frameworks (MOFs), are considered as candidates for the development of energy-efficient and high-performing gas separation processes based on nanoporous materials. A recently reported class of hybrid materials, which consist of ionic liquid (IL) pairs encapsulated in the cages of ZIFs (namely IL@ZIFs), has revealed exceptional CO2 selectivity. Herein, we investigate the effect of the metal center type of the framework on the performance of IL@ZIFs, exclusively using computational methods. We use the highly studied ZIF-8 and prepare metal variants, by replacing the original metal Zn2+ with Co2+, Be2+ and Cd2+. For each ZIF-8 metal analogue, we prepare IL@ZIFs of varying IL composition, by introducing methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim+][Tf2N−]) in the ZIF cages. With the use of Monte Carlo simulations, we evaluate the selectivity of both the pristine ZIF-8 metal analogues and the IL@ZIF-8 metal analogues for CO2/CH4 and CO2/N2 mixtures. Our results show that metal variation affects the ZIF performance. Moreover, the IL composition affects the performance; for each IL@ZIF-8 case, there is an optimum IL composition that ensures maximum selectivity for the two mixtures. In an effort to facilitate the evaluation of the IL composition-related performance, we use the available pore volume (APV) parameter. Our analysis reveals that there is a common APV value among all IL@ZIF-8 analogues that dictates the optimum separation performance for both CO2/CH4 and CO2/N2 mixtures. This finding can help towards a better understanding of the design and preparation of these materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0me00021c</doi></addata></record>
fulltext fulltext
identifier EISSN: 2058-9689
ispartof Molecular systems design & engineering, 2020-01, Vol.5 (7), p.1230-1238
issn 2058-9689
language eng
recordid cdi_proquest_journals_2434387161
source Royal Society Of Chemistry Journals 2008-
subjects Cages
Carbon dioxide
Cobalt
Composition
Computer simulation
Data points
Encapsulation
Gas separation
Ionic liquids
Metal-organic frameworks
Methane
Monte Carlo simulation
Parameters
Selectivity
Sorption
Zeolites
title Encapsulation of [bmim+][Tf2N−] in different ZIF-8 metal analogues and evaluation of their CO2 selectivity over CH4 and N2 using molecular simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encapsulation%20of%20%5Bbmim+%5D%5BTf2N%E2%88%92%5D%20in%20different%20ZIF-8%20metal%20analogues%20and%20evaluation%20of%20their%20CO2%20selectivity%20over%20CH4%20and%20N2%20using%20molecular%20simulation&rft.jtitle=Molecular%20systems%20design%20&%20engineering&rft.au=Mohamed,%20Amro%20M%20O&rft.date=2020-01-01&rft.volume=5&rft.issue=7&rft.spage=1230&rft.epage=1238&rft.pages=1230-1238&rft.eissn=2058-9689&rft_id=info:doi/10.1039/d0me00021c&rft_dat=%3Cproquest%3E2434387161%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434387161&rft_id=info:pmid/&rfr_iscdi=true