Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition
The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form 0 ≤ f ( r , u ) ≤ a 1 | u | p (...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2020-10, Vol.59 (5), Article 147 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Calculus of variations and partial differential equations |
container_volume | 59 |
creator | de Araujo, Anderson L. A. Faria, Luiz F. O. Melo Gurjão, Jéssyca L. F. |
description | The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form
0
≤
f
(
r
,
u
)
≤
a
1
|
u
|
p
(
r
)
-
1
, if
u
≥
0
, where
r
=
|
x
|
,
p
(
r
)
=
2
∗
+
r
α
, with
α
>
0
, and
2
∗
=
2
N
/
(
N
-
2
)
is the critical Sobolev embedding exponent. We do not impose the Ambrosetti–Rabinowitz condition on the nonlinearity (or some additional conditions) to obtain Palais–Smale or Cerami compactness condition. We employ techniques based on the Galerkin approximations scheme, combining with a Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces (due to do Ó et al. in Calc Var Partial Differ Equ 55:83, 2016), to establish the existence result. |
doi_str_mv | 10.1007/s00526-020-01800-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434255663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434255663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-79396cdf359fd0e5873b453d112dc411df3be2f5c839b9749bcb184992c010473</originalsourceid><addsrcrecordid>eNp9kMtKxTAURYMoeL36A44Cjqsnr7YZivgCQfExDm2aaqQmNUmvV7_AzzZawZmjDPbe64SF0D6BQwJQHUUAQcsCKBRAaoBivYEWhDNaQM3EJlqA5LygZSm30U6MzwBE1JQv0OeNjzbZlcHRD1Oy3kXse-y8G6wzTcBmGOyYrMbmdWrm3LqVH1bWPeI4jSbokAG6GfCdb_1gVtisR--MSxG_2fTkp4SPX9rgo0nJ4sZ1-LZprfM5_MDau85-Y3fRVt8M0ez9vkv0cHZ6f3JRXF2fX54cXxWaEZmKSjJZ6q5nQvYdGFFXrOWCdYTQTnNCctIa2gtdM9nKistWt6TmUlINBHjFluhg5o7Bv04mJvXsp-DySUU541SIsmS5ReeWzv-OwfRqDPalCe-KgPo2rmbjKhtXP8bVOo_YPIq57B5N-EP_s_oCPhmIdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434255663</pqid></control><display><type>article</type><title>Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition</title><source>Springer Nature - Complete Springer Journals</source><creator>de Araujo, Anderson L. A. ; Faria, Luiz F. O. ; Melo Gurjão, Jéssyca L. F.</creator><creatorcontrib>de Araujo, Anderson L. A. ; Faria, Luiz F. O. ; Melo Gurjão, Jéssyca L. F.</creatorcontrib><description>The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form
0
≤
f
(
r
,
u
)
≤
a
1
|
u
|
p
(
r
)
-
1
, if
u
≥
0
, where
r
=
|
x
|
,
p
(
r
)
=
2
∗
+
r
α
, with
α
>
0
, and
2
∗
=
2
N
/
(
N
-
2
)
is the critical Sobolev embedding exponent. We do not impose the Ambrosetti–Rabinowitz condition on the nonlinearity (or some additional conditions) to obtain Palais–Smale or Cerami compactness condition. We employ techniques based on the Galerkin approximations scheme, combining with a Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces (due to do Ó et al. in Calc Var Partial Differ Equ 55:83, 2016), to establish the existence result.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-020-01800-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boundary value problems ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dirichlet problem ; Elliptic functions ; Exponents ; Galerkin method ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Nonlinearity ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2020-10, Vol.59 (5), Article 147</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-79396cdf359fd0e5873b453d112dc411df3be2f5c839b9749bcb184992c010473</citedby><cites>FETCH-LOGICAL-c319t-79396cdf359fd0e5873b453d112dc411df3be2f5c839b9749bcb184992c010473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-020-01800-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-020-01800-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>de Araujo, Anderson L. A.</creatorcontrib><creatorcontrib>Faria, Luiz F. O.</creatorcontrib><creatorcontrib>Melo Gurjão, Jéssyca L. F.</creatorcontrib><title>Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form
0
≤
f
(
r
,
u
)
≤
a
1
|
u
|
p
(
r
)
-
1
, if
u
≥
0
, where
r
=
|
x
|
,
p
(
r
)
=
2
∗
+
r
α
, with
α
>
0
, and
2
∗
=
2
N
/
(
N
-
2
)
is the critical Sobolev embedding exponent. We do not impose the Ambrosetti–Rabinowitz condition on the nonlinearity (or some additional conditions) to obtain Palais–Smale or Cerami compactness condition. We employ techniques based on the Galerkin approximations scheme, combining with a Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces (due to do Ó et al. in Calc Var Partial Differ Equ 55:83, 2016), to establish the existence result.</description><subject>Analysis</subject><subject>Boundary value problems</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dirichlet problem</subject><subject>Elliptic functions</subject><subject>Exponents</subject><subject>Galerkin method</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxTAURYMoeL36A44Cjqsnr7YZivgCQfExDm2aaqQmNUmvV7_AzzZawZmjDPbe64SF0D6BQwJQHUUAQcsCKBRAaoBivYEWhDNaQM3EJlqA5LygZSm30U6MzwBE1JQv0OeNjzbZlcHRD1Oy3kXse-y8G6wzTcBmGOyYrMbmdWrm3LqVH1bWPeI4jSbokAG6GfCdb_1gVtisR--MSxG_2fTkp4SPX9rgo0nJ4sZ1-LZprfM5_MDau85-Y3fRVt8M0ez9vkv0cHZ6f3JRXF2fX54cXxWaEZmKSjJZ6q5nQvYdGFFXrOWCdYTQTnNCctIa2gtdM9nKistWt6TmUlINBHjFluhg5o7Bv04mJvXsp-DySUU541SIsmS5ReeWzv-OwfRqDPalCe-KgPo2rmbjKhtXP8bVOo_YPIq57B5N-EP_s_oCPhmIdg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>de Araujo, Anderson L. A.</creator><creator>Faria, Luiz F. O.</creator><creator>Melo Gurjão, Jéssyca L. F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20201001</creationdate><title>Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition</title><author>de Araujo, Anderson L. A. ; Faria, Luiz F. O. ; Melo Gurjão, Jéssyca L. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-79396cdf359fd0e5873b453d112dc411df3be2f5c839b9749bcb184992c010473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Boundary value problems</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dirichlet problem</topic><topic>Elliptic functions</topic><topic>Exponents</topic><topic>Galerkin method</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Araujo, Anderson L. A.</creatorcontrib><creatorcontrib>Faria, Luiz F. O.</creatorcontrib><creatorcontrib>Melo Gurjão, Jéssyca L. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Araujo, Anderson L. A.</au><au>Faria, Luiz F. O.</au><au>Melo Gurjão, Jéssyca L. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>59</volume><issue>5</issue><artnum>147</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form
0
≤
f
(
r
,
u
)
≤
a
1
|
u
|
p
(
r
)
-
1
, if
u
≥
0
, where
r
=
|
x
|
,
p
(
r
)
=
2
∗
+
r
α
, with
α
>
0
, and
2
∗
=
2
N
/
(
N
-
2
)
is the critical Sobolev embedding exponent. We do not impose the Ambrosetti–Rabinowitz condition on the nonlinearity (or some additional conditions) to obtain Palais–Smale or Cerami compactness condition. We employ techniques based on the Galerkin approximations scheme, combining with a Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces (due to do Ó et al. in Calc Var Partial Differ Equ 55:83, 2016), to establish the existence result.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-020-01800-x</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2020-10, Vol.59 (5), Article 147 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2434255663 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Boundary value problems Calculus of Variations and Optimal Control Optimization Control Dirichlet problem Elliptic functions Exponents Galerkin method Mathematical and Computational Physics Mathematics Mathematics and Statistics Nonlinear equations Nonlinearity Systems Theory Theoretical |
title | Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20solutions%20of%20nonlinear%20elliptic%20equations%20involving%20supercritical%20Sobolev%20exponents%20without%20Ambrosetti%20and%20Rabinowitz%20condition&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=de%20Araujo,%20Anderson%20L.%20A.&rft.date=2020-10-01&rft.volume=59&rft.issue=5&rft.artnum=147&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-020-01800-x&rft_dat=%3Cproquest_cross%3E2434255663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434255663&rft_id=info:pmid/&rfr_iscdi=true |