Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition

The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form 0 ≤ f ( r , u ) ≤ a 1 | u | p (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2020-10, Vol.59 (5), Article 147
Hauptverfasser: de Araujo, Anderson L. A., Faria, Luiz F. O., Melo Gurjão, Jéssyca L. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 59
creator de Araujo, Anderson L. A.
Faria, Luiz F. O.
Melo Gurjão, Jéssyca L. F.
description The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form 0 ≤ f ( r , u ) ≤ a 1 | u | p ( r ) - 1 , if u ≥ 0 , where r = | x | , p ( r ) = 2 ∗ + r α , with α > 0 , and 2 ∗ = 2 N / ( N - 2 ) is the critical Sobolev embedding exponent. We do not impose the Ambrosetti–Rabinowitz condition on the nonlinearity (or some additional conditions) to obtain Palais–Smale or Cerami compactness condition. We employ techniques based on the Galerkin approximations scheme, combining with a Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces (due to do Ó et al. in Calc Var Partial Differ Equ 55:83, 2016), to establish the existence result.
doi_str_mv 10.1007/s00526-020-01800-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434255663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434255663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-79396cdf359fd0e5873b453d112dc411df3be2f5c839b9749bcb184992c010473</originalsourceid><addsrcrecordid>eNp9kMtKxTAURYMoeL36A44Cjqsnr7YZivgCQfExDm2aaqQmNUmvV7_AzzZawZmjDPbe64SF0D6BQwJQHUUAQcsCKBRAaoBivYEWhDNaQM3EJlqA5LygZSm30U6MzwBE1JQv0OeNjzbZlcHRD1Oy3kXse-y8G6wzTcBmGOyYrMbmdWrm3LqVH1bWPeI4jSbokAG6GfCdb_1gVtisR--MSxG_2fTkp4SPX9rgo0nJ4sZ1-LZprfM5_MDau85-Y3fRVt8M0ez9vkv0cHZ6f3JRXF2fX54cXxWaEZmKSjJZ6q5nQvYdGFFXrOWCdYTQTnNCctIa2gtdM9nKistWt6TmUlINBHjFluhg5o7Bv04mJvXsp-DySUU541SIsmS5ReeWzv-OwfRqDPalCe-KgPo2rmbjKhtXP8bVOo_YPIq57B5N-EP_s_oCPhmIdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434255663</pqid></control><display><type>article</type><title>Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition</title><source>Springer Nature - Complete Springer Journals</source><creator>de Araujo, Anderson L. A. ; Faria, Luiz F. O. ; Melo Gurjão, Jéssyca L. F.</creator><creatorcontrib>de Araujo, Anderson L. A. ; Faria, Luiz F. O. ; Melo Gurjão, Jéssyca L. F.</creatorcontrib><description>The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form 0 ≤ f ( r , u ) ≤ a 1 | u | p ( r ) - 1 , if u ≥ 0 , where r = | x | , p ( r ) = 2 ∗ + r α , with α &gt; 0 , and 2 ∗ = 2 N / ( N - 2 ) is the critical Sobolev embedding exponent. We do not impose the Ambrosetti–Rabinowitz condition on the nonlinearity (or some additional conditions) to obtain Palais–Smale or Cerami compactness condition. We employ techniques based on the Galerkin approximations scheme, combining with a Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces (due to do Ó et al. in Calc Var Partial Differ Equ 55:83, 2016), to establish the existence result.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-020-01800-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boundary value problems ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dirichlet problem ; Elliptic functions ; Exponents ; Galerkin method ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Nonlinearity ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2020-10, Vol.59 (5), Article 147</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-79396cdf359fd0e5873b453d112dc411df3be2f5c839b9749bcb184992c010473</citedby><cites>FETCH-LOGICAL-c319t-79396cdf359fd0e5873b453d112dc411df3be2f5c839b9749bcb184992c010473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-020-01800-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-020-01800-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>de Araujo, Anderson L. A.</creatorcontrib><creatorcontrib>Faria, Luiz F. O.</creatorcontrib><creatorcontrib>Melo Gurjão, Jéssyca L. F.</creatorcontrib><title>Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form 0 ≤ f ( r , u ) ≤ a 1 | u | p ( r ) - 1 , if u ≥ 0 , where r = | x | , p ( r ) = 2 ∗ + r α , with α &gt; 0 , and 2 ∗ = 2 N / ( N - 2 ) is the critical Sobolev embedding exponent. We do not impose the Ambrosetti–Rabinowitz condition on the nonlinearity (or some additional conditions) to obtain Palais–Smale or Cerami compactness condition. We employ techniques based on the Galerkin approximations scheme, combining with a Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces (due to do Ó et al. in Calc Var Partial Differ Equ 55:83, 2016), to establish the existence result.</description><subject>Analysis</subject><subject>Boundary value problems</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dirichlet problem</subject><subject>Elliptic functions</subject><subject>Exponents</subject><subject>Galerkin method</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxTAURYMoeL36A44Cjqsnr7YZivgCQfExDm2aaqQmNUmvV7_AzzZawZmjDPbe64SF0D6BQwJQHUUAQcsCKBRAaoBivYEWhDNaQM3EJlqA5LygZSm30U6MzwBE1JQv0OeNjzbZlcHRD1Oy3kXse-y8G6wzTcBmGOyYrMbmdWrm3LqVH1bWPeI4jSbokAG6GfCdb_1gVtisR--MSxG_2fTkp4SPX9rgo0nJ4sZ1-LZprfM5_MDau85-Y3fRVt8M0ez9vkv0cHZ6f3JRXF2fX54cXxWaEZmKSjJZ6q5nQvYdGFFXrOWCdYTQTnNCctIa2gtdM9nKistWt6TmUlINBHjFluhg5o7Bv04mJvXsp-DySUU541SIsmS5ReeWzv-OwfRqDPalCe-KgPo2rmbjKhtXP8bVOo_YPIq57B5N-EP_s_oCPhmIdg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>de Araujo, Anderson L. A.</creator><creator>Faria, Luiz F. O.</creator><creator>Melo Gurjão, Jéssyca L. F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20201001</creationdate><title>Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition</title><author>de Araujo, Anderson L. A. ; Faria, Luiz F. O. ; Melo Gurjão, Jéssyca L. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-79396cdf359fd0e5873b453d112dc411df3be2f5c839b9749bcb184992c010473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Boundary value problems</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dirichlet problem</topic><topic>Elliptic functions</topic><topic>Exponents</topic><topic>Galerkin method</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Araujo, Anderson L. A.</creatorcontrib><creatorcontrib>Faria, Luiz F. O.</creatorcontrib><creatorcontrib>Melo Gurjão, Jéssyca L. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Araujo, Anderson L. A.</au><au>Faria, Luiz F. O.</au><au>Melo Gurjão, Jéssyca L. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>59</volume><issue>5</issue><artnum>147</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>The purpose of the present paper is to study a class of semilinear elliptic Dirichlet boundary value problems in the ball, where the nonlinearities involve the sum of a sublinear variable exponent and a superlinear (may be supercritical) variable exponents of the form 0 ≤ f ( r , u ) ≤ a 1 | u | p ( r ) - 1 , if u ≥ 0 , where r = | x | , p ( r ) = 2 ∗ + r α , with α &gt; 0 , and 2 ∗ = 2 N / ( N - 2 ) is the critical Sobolev embedding exponent. We do not impose the Ambrosetti–Rabinowitz condition on the nonlinearity (or some additional conditions) to obtain Palais–Smale or Cerami compactness condition. We employ techniques based on the Galerkin approximations scheme, combining with a Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces (due to do Ó et al. in Calc Var Partial Differ Equ 55:83, 2016), to establish the existence result.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-020-01800-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2020-10, Vol.59 (5), Article 147
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2434255663
source Springer Nature - Complete Springer Journals
subjects Analysis
Boundary value problems
Calculus of Variations and Optimal Control
Optimization
Control
Dirichlet problem
Elliptic functions
Exponents
Galerkin method
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonlinear equations
Nonlinearity
Systems Theory
Theoretical
title Positive solutions of nonlinear elliptic equations involving supercritical Sobolev exponents without Ambrosetti and Rabinowitz condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20solutions%20of%20nonlinear%20elliptic%20equations%20involving%20supercritical%20Sobolev%20exponents%20without%20Ambrosetti%20and%20Rabinowitz%20condition&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=de%20Araujo,%20Anderson%20L.%20A.&rft.date=2020-10-01&rft.volume=59&rft.issue=5&rft.artnum=147&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-020-01800-x&rft_dat=%3Cproquest_cross%3E2434255663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434255663&rft_id=info:pmid/&rfr_iscdi=true