Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method

Water body segmentation helps in extracting water bodies like lake, pond, river, and reservoir from high resolution satellite images. This also helps in discovering new water bodies. But, extraction of water bodies from satellite images is much complicated, mainly due to the severe disparity in size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 2020-08, Vol.36 (3), p.1242-1260
Hauptverfasser: Aalan Babu, A, Mary Anita Rajam, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1260
container_issue 3
container_start_page 1242
container_title Computational intelligence
container_volume 36
creator Aalan Babu, A
Mary Anita Rajam, V
description Water body segmentation helps in extracting water bodies like lake, pond, river, and reservoir from high resolution satellite images. This also helps in discovering new water bodies. But, extraction of water bodies from satellite images is much complicated, mainly due to the severe disparity in size, shape, and appearance of the water bodies. In this article, Kapur's entropy‐based thresholding method is proposed for the segmentation of water bodies from Very High Resolution (VHR) satellite images. The dataset used in this article is AIRS (Aerial Imagery for Roof Segmentation) dataset, with VHR satellite images, from which only the images with water bodies are considered. Experimental results show that the proposed method yields better segmentation performance with an overall accuracy of 98.43% and Structural Similarity Index rate of 0.9712.
doi_str_mv 10.1111/coin.12339
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434251848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434251848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-ac9ee18e9a12040ff27544ccf3477f28a4d02098b279d81923cfeb6dadd8591e3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqWw4QSWWCAhpfiVxl6iikcFohsQS8uNx22qJA52KpQdR-CMnISEsGY2s5jvn9F8CJ1TMqN9Xee-qGeUca4O0ISKeZbIuSCHaEIkE0mmeHqMTmLcEUIoF3KCzJtpIXx_fq297XCETQV1a9rC19gFX-HYj8uyaAEXldlAxPtY1Bv8aJp9uIy4h4NvuiFvIljcbgPErS_tAFXQbr09RUfOlBHO_voUvd7dviwekqfV_XJx85TknFCVmFwBUAnKUEYEcY5lqRB57rjIMsekEZYwouSaZcpKqhjPHazn1lgrU0WBT9HFuLcJ_n0PsdU7vw91f1IzwQVLqRSyp65GKg8-xgBON6H_LHSaEj0o1INC_auwh-kIfxQldP-QerFaPo-ZH3ytd0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434251848</pqid></control><display><type>article</type><title>Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method</title><source>EBSCOhost Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Aalan Babu, A ; Mary Anita Rajam, V</creator><creatorcontrib>Aalan Babu, A ; Mary Anita Rajam, V</creatorcontrib><description>Water body segmentation helps in extracting water bodies like lake, pond, river, and reservoir from high resolution satellite images. This also helps in discovering new water bodies. But, extraction of water bodies from satellite images is much complicated, mainly due to the severe disparity in size, shape, and appearance of the water bodies. In this article, Kapur's entropy‐based thresholding method is proposed for the segmentation of water bodies from Very High Resolution (VHR) satellite images. The dataset used in this article is AIRS (Aerial Imagery for Roof Segmentation) dataset, with VHR satellite images, from which only the images with water bodies are considered. Experimental results show that the proposed method yields better segmentation performance with an overall accuracy of 98.43% and Structural Similarity Index rate of 0.9712.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12339</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Datasets ; Entropy ; entropy‐based ; High resolution ; Image resolution ; Image segmentation ; morphological operations ; Satellite imagery ; threshold</subject><ispartof>Computational intelligence, 2020-08, Vol.36 (3), p.1242-1260</ispartof><rights>2020 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-ac9ee18e9a12040ff27544ccf3477f28a4d02098b279d81923cfeb6dadd8591e3</citedby><cites>FETCH-LOGICAL-c3019-ac9ee18e9a12040ff27544ccf3477f28a4d02098b279d81923cfeb6dadd8591e3</cites><orcidid>0000-0002-2261-3401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12339$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12339$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Aalan Babu, A</creatorcontrib><creatorcontrib>Mary Anita Rajam, V</creatorcontrib><title>Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method</title><title>Computational intelligence</title><description>Water body segmentation helps in extracting water bodies like lake, pond, river, and reservoir from high resolution satellite images. This also helps in discovering new water bodies. But, extraction of water bodies from satellite images is much complicated, mainly due to the severe disparity in size, shape, and appearance of the water bodies. In this article, Kapur's entropy‐based thresholding method is proposed for the segmentation of water bodies from Very High Resolution (VHR) satellite images. The dataset used in this article is AIRS (Aerial Imagery for Roof Segmentation) dataset, with VHR satellite images, from which only the images with water bodies are considered. Experimental results show that the proposed method yields better segmentation performance with an overall accuracy of 98.43% and Structural Similarity Index rate of 0.9712.</description><subject>Datasets</subject><subject>Entropy</subject><subject>entropy‐based</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>morphological operations</subject><subject>Satellite imagery</subject><subject>threshold</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqWw4QSWWCAhpfiVxl6iikcFohsQS8uNx22qJA52KpQdR-CMnISEsGY2s5jvn9F8CJ1TMqN9Xee-qGeUca4O0ISKeZbIuSCHaEIkE0mmeHqMTmLcEUIoF3KCzJtpIXx_fq297XCETQV1a9rC19gFX-HYj8uyaAEXldlAxPtY1Bv8aJp9uIy4h4NvuiFvIljcbgPErS_tAFXQbr09RUfOlBHO_voUvd7dviwekqfV_XJx85TknFCVmFwBUAnKUEYEcY5lqRB57rjIMsekEZYwouSaZcpKqhjPHazn1lgrU0WBT9HFuLcJ_n0PsdU7vw91f1IzwQVLqRSyp65GKg8-xgBON6H_LHSaEj0o1INC_auwh-kIfxQldP-QerFaPo-ZH3ytd0I</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Aalan Babu, A</creator><creator>Mary Anita Rajam, V</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2261-3401</orcidid></search><sort><creationdate>202008</creationdate><title>Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method</title><author>Aalan Babu, A ; Mary Anita Rajam, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-ac9ee18e9a12040ff27544ccf3477f28a4d02098b279d81923cfeb6dadd8591e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Datasets</topic><topic>Entropy</topic><topic>entropy‐based</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>morphological operations</topic><topic>Satellite imagery</topic><topic>threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aalan Babu, A</creatorcontrib><creatorcontrib>Mary Anita Rajam, V</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aalan Babu, A</au><au>Mary Anita Rajam, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method</atitle><jtitle>Computational intelligence</jtitle><date>2020-08</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>1242</spage><epage>1260</epage><pages>1242-1260</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Water body segmentation helps in extracting water bodies like lake, pond, river, and reservoir from high resolution satellite images. This also helps in discovering new water bodies. But, extraction of water bodies from satellite images is much complicated, mainly due to the severe disparity in size, shape, and appearance of the water bodies. In this article, Kapur's entropy‐based thresholding method is proposed for the segmentation of water bodies from Very High Resolution (VHR) satellite images. The dataset used in this article is AIRS (Aerial Imagery for Roof Segmentation) dataset, with VHR satellite images, from which only the images with water bodies are considered. Experimental results show that the proposed method yields better segmentation performance with an overall accuracy of 98.43% and Structural Similarity Index rate of 0.9712.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/coin.12339</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2261-3401</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 2020-08, Vol.36 (3), p.1242-1260
issn 0824-7935
1467-8640
language eng
recordid cdi_proquest_journals_2434251848
source EBSCOhost Business Source Complete; Wiley Online Library All Journals
subjects Datasets
Entropy
entropy‐based
High resolution
Image resolution
Image segmentation
morphological operations
Satellite imagery
threshold
title Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%E2%80%90body%20segmentation%20from%20satellite%20images%20using%20Kapur's%20entropy%E2%80%90based%20thresholding%20method&rft.jtitle=Computational%20intelligence&rft.au=Aalan%20Babu,%20A&rft.date=2020-08&rft.volume=36&rft.issue=3&rft.spage=1242&rft.epage=1260&rft.pages=1242-1260&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12339&rft_dat=%3Cproquest_cross%3E2434251848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434251848&rft_id=info:pmid/&rfr_iscdi=true