Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method
Water body segmentation helps in extracting water bodies like lake, pond, river, and reservoir from high resolution satellite images. This also helps in discovering new water bodies. But, extraction of water bodies from satellite images is much complicated, mainly due to the severe disparity in size...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2020-08, Vol.36 (3), p.1242-1260 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1260 |
---|---|
container_issue | 3 |
container_start_page | 1242 |
container_title | Computational intelligence |
container_volume | 36 |
creator | Aalan Babu, A Mary Anita Rajam, V |
description | Water body segmentation helps in extracting water bodies like lake, pond, river, and reservoir from high resolution satellite images. This also helps in discovering new water bodies. But, extraction of water bodies from satellite images is much complicated, mainly due to the severe disparity in size, shape, and appearance of the water bodies. In this article, Kapur's entropy‐based thresholding method is proposed for the segmentation of water bodies from Very High Resolution (VHR) satellite images. The dataset used in this article is AIRS (Aerial Imagery for Roof Segmentation) dataset, with VHR satellite images, from which only the images with water bodies are considered. Experimental results show that the proposed method yields better segmentation performance with an overall accuracy of 98.43% and Structural Similarity Index rate of 0.9712. |
doi_str_mv | 10.1111/coin.12339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434251848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434251848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-ac9ee18e9a12040ff27544ccf3477f28a4d02098b279d81923cfeb6dadd8591e3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqWw4QSWWCAhpfiVxl6iikcFohsQS8uNx22qJA52KpQdR-CMnISEsGY2s5jvn9F8CJ1TMqN9Xee-qGeUca4O0ISKeZbIuSCHaEIkE0mmeHqMTmLcEUIoF3KCzJtpIXx_fq297XCETQV1a9rC19gFX-HYj8uyaAEXldlAxPtY1Bv8aJp9uIy4h4NvuiFvIljcbgPErS_tAFXQbr09RUfOlBHO_voUvd7dviwekqfV_XJx85TknFCVmFwBUAnKUEYEcY5lqRB57rjIMsekEZYwouSaZcpKqhjPHazn1lgrU0WBT9HFuLcJ_n0PsdU7vw91f1IzwQVLqRSyp65GKg8-xgBON6H_LHSaEj0o1INC_auwh-kIfxQldP-QerFaPo-ZH3ytd0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434251848</pqid></control><display><type>article</type><title>Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method</title><source>EBSCOhost Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Aalan Babu, A ; Mary Anita Rajam, V</creator><creatorcontrib>Aalan Babu, A ; Mary Anita Rajam, V</creatorcontrib><description>Water body segmentation helps in extracting water bodies like lake, pond, river, and reservoir from high resolution satellite images. This also helps in discovering new water bodies. But, extraction of water bodies from satellite images is much complicated, mainly due to the severe disparity in size, shape, and appearance of the water bodies. In this article, Kapur's entropy‐based thresholding method is proposed for the segmentation of water bodies from Very High Resolution (VHR) satellite images. The dataset used in this article is AIRS (Aerial Imagery for Roof Segmentation) dataset, with VHR satellite images, from which only the images with water bodies are considered. Experimental results show that the proposed method yields better segmentation performance with an overall accuracy of 98.43% and Structural Similarity Index rate of 0.9712.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12339</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Datasets ; Entropy ; entropy‐based ; High resolution ; Image resolution ; Image segmentation ; morphological operations ; Satellite imagery ; threshold</subject><ispartof>Computational intelligence, 2020-08, Vol.36 (3), p.1242-1260</ispartof><rights>2020 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-ac9ee18e9a12040ff27544ccf3477f28a4d02098b279d81923cfeb6dadd8591e3</citedby><cites>FETCH-LOGICAL-c3019-ac9ee18e9a12040ff27544ccf3477f28a4d02098b279d81923cfeb6dadd8591e3</cites><orcidid>0000-0002-2261-3401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12339$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12339$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Aalan Babu, A</creatorcontrib><creatorcontrib>Mary Anita Rajam, V</creatorcontrib><title>Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method</title><title>Computational intelligence</title><description>Water body segmentation helps in extracting water bodies like lake, pond, river, and reservoir from high resolution satellite images. This also helps in discovering new water bodies. But, extraction of water bodies from satellite images is much complicated, mainly due to the severe disparity in size, shape, and appearance of the water bodies. In this article, Kapur's entropy‐based thresholding method is proposed for the segmentation of water bodies from Very High Resolution (VHR) satellite images. The dataset used in this article is AIRS (Aerial Imagery for Roof Segmentation) dataset, with VHR satellite images, from which only the images with water bodies are considered. Experimental results show that the proposed method yields better segmentation performance with an overall accuracy of 98.43% and Structural Similarity Index rate of 0.9712.</description><subject>Datasets</subject><subject>Entropy</subject><subject>entropy‐based</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>morphological operations</subject><subject>Satellite imagery</subject><subject>threshold</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqWw4QSWWCAhpfiVxl6iikcFohsQS8uNx22qJA52KpQdR-CMnISEsGY2s5jvn9F8CJ1TMqN9Xee-qGeUca4O0ISKeZbIuSCHaEIkE0mmeHqMTmLcEUIoF3KCzJtpIXx_fq297XCETQV1a9rC19gFX-HYj8uyaAEXldlAxPtY1Bv8aJp9uIy4h4NvuiFvIljcbgPErS_tAFXQbr09RUfOlBHO_voUvd7dviwekqfV_XJx85TknFCVmFwBUAnKUEYEcY5lqRB57rjIMsekEZYwouSaZcpKqhjPHazn1lgrU0WBT9HFuLcJ_n0PsdU7vw91f1IzwQVLqRSyp65GKg8-xgBON6H_LHSaEj0o1INC_auwh-kIfxQldP-QerFaPo-ZH3ytd0I</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Aalan Babu, A</creator><creator>Mary Anita Rajam, V</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2261-3401</orcidid></search><sort><creationdate>202008</creationdate><title>Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method</title><author>Aalan Babu, A ; Mary Anita Rajam, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-ac9ee18e9a12040ff27544ccf3477f28a4d02098b279d81923cfeb6dadd8591e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Datasets</topic><topic>Entropy</topic><topic>entropy‐based</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>morphological operations</topic><topic>Satellite imagery</topic><topic>threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aalan Babu, A</creatorcontrib><creatorcontrib>Mary Anita Rajam, V</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aalan Babu, A</au><au>Mary Anita Rajam, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method</atitle><jtitle>Computational intelligence</jtitle><date>2020-08</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>1242</spage><epage>1260</epage><pages>1242-1260</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Water body segmentation helps in extracting water bodies like lake, pond, river, and reservoir from high resolution satellite images. This also helps in discovering new water bodies. But, extraction of water bodies from satellite images is much complicated, mainly due to the severe disparity in size, shape, and appearance of the water bodies. In this article, Kapur's entropy‐based thresholding method is proposed for the segmentation of water bodies from Very High Resolution (VHR) satellite images. The dataset used in this article is AIRS (Aerial Imagery for Roof Segmentation) dataset, with VHR satellite images, from which only the images with water bodies are considered. Experimental results show that the proposed method yields better segmentation performance with an overall accuracy of 98.43% and Structural Similarity Index rate of 0.9712.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/coin.12339</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2261-3401</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2020-08, Vol.36 (3), p.1242-1260 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_journals_2434251848 |
source | EBSCOhost Business Source Complete; Wiley Online Library All Journals |
subjects | Datasets Entropy entropy‐based High resolution Image resolution Image segmentation morphological operations Satellite imagery threshold |
title | Water‐body segmentation from satellite images using Kapur's entropy‐based thresholding method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%E2%80%90body%20segmentation%20from%20satellite%20images%20using%20Kapur's%20entropy%E2%80%90based%20thresholding%20method&rft.jtitle=Computational%20intelligence&rft.au=Aalan%20Babu,%20A&rft.date=2020-08&rft.volume=36&rft.issue=3&rft.spage=1242&rft.epage=1260&rft.pages=1242-1260&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12339&rft_dat=%3Cproquest_cross%3E2434251848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434251848&rft_id=info:pmid/&rfr_iscdi=true |