Regulation of colonic epithelial cell homeostasis by mTORC1

Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-08, Vol.10 (1), p.13810-13810, Article 13810
Hauptverfasser: Kotani, Takenori, Setiawan, Jajar, Konno, Tasuku, Ihara, Noriko, Okamoto, Saki, Saito, Yasuyuki, Murata, Yoji, Noda, Tetsuo, Matozaki, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13810
container_issue 1
container_start_page 13810
container_title Scientific reports
container_volume 10
creator Kotani, Takenori
Setiawan, Jajar
Konno, Tasuku
Ihara, Noriko
Okamoto, Saki
Saito, Yasuyuki
Murata, Yoji
Noda, Tetsuo
Matozaki, Takashi
description Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions such as proliferation and autophagy by various external stimuli. We here show that ablation of tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, specifically in intestinal epithelial cells of mice resulted in increased activity of mTORC1 of, as well as increased proliferative activity of, CECs. Such Tsc2 ablation also reduced the population of Lgr5-positive colonic stem cells and the expression of Wnt target genes in CECs. The stimulatory phosphorylation of the kinase Akt and inhibitory phosphorylation of glycogen synthase kinase 3β were both markedly decreased in the colon of the Tsc2 conditional knockout (CKO) mice. Development of colonic organoids with cryptlike structures was enhanced for Tsc2 CKO mice compared with control mice. Finally, Tsc2 CKO mice manifested increased susceptibility to dextran sulfate sodium–induced colitis. Our results thus suggest that mTORC1 activity promotes the proliferation of, as well as the expression of Wnt target genes in, CECs and thereby contributes to colonic organogenesis and homeostasis.
doi_str_mv 10.1038/s41598-020-70655-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434166284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e259b404b0d9467a82163ad3fbd8cc8b</doaj_id><sourcerecordid>2434166284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c687t-f4cfaa9a7b86368867404cf4be14a352e4e04515cda425ff709a3b050a47dc4c3</originalsourceid><addsrcrecordid>eNqNkk1r3DAQhk1paUKSP9BDMfRSKG70LZlCoZh-BAKBkJ6FJI93tdjWVrJT8u-rXSfbJIdSXSRGz7wazTtF8QajjxhRdZ4Y5rWqEEGVRILzCr8ojglivCKUkJePzkfFWUoblBcnNcP16-KIElkLpeRx8ekaVnNvJh_GMnSlC30YvSth66c19N70pYO-L9dhgJAmk3wq7V053FxdN_i0eNWZPsHZ_X5S_Pz29ab5UV1efb9ovlxWTig5VR1znTG1kVYJml8VkqEcYhYwM5QTYJBLxdy1hhHedRLVhlrEkWGydczRk-Ji0W2D2eht9IOJdzoYr_eBEFfaxMm7HjQQXtssb1FbMyGNIlhQ09LOtso5ZbPW50VrO9sBWgfjFE3_RPTpzejXehVutWS5Z4pkgff3AjH8miFNevBp1yMzQpiTJowyJgWueUbfPUM3YY5jbtWewkIQxTJFFsrFkFKE7lAMRnpntV6s1tlqvbda45z09vE3DikPxmZALcBvsKFLzsPo4IDtZkFSkruzGwvS-Gk_AU2Yxymnfvj_1EzThU6ZGFcQ_37yH_X_AZUS07o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434166284</pqid></control><display><type>article</type><title>Regulation of colonic epithelial cell homeostasis by mTORC1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kotani, Takenori ; Setiawan, Jajar ; Konno, Tasuku ; Ihara, Noriko ; Okamoto, Saki ; Saito, Yasuyuki ; Murata, Yoji ; Noda, Tetsuo ; Matozaki, Takashi</creator><creatorcontrib>Kotani, Takenori ; Setiawan, Jajar ; Konno, Tasuku ; Ihara, Noriko ; Okamoto, Saki ; Saito, Yasuyuki ; Murata, Yoji ; Noda, Tetsuo ; Matozaki, Takashi</creatorcontrib><description>Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions such as proliferation and autophagy by various external stimuli. We here show that ablation of tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, specifically in intestinal epithelial cells of mice resulted in increased activity of mTORC1 of, as well as increased proliferative activity of, CECs. Such Tsc2 ablation also reduced the population of Lgr5-positive colonic stem cells and the expression of Wnt target genes in CECs. The stimulatory phosphorylation of the kinase Akt and inhibitory phosphorylation of glycogen synthase kinase 3β were both markedly decreased in the colon of the Tsc2 conditional knockout (CKO) mice. Development of colonic organoids with cryptlike structures was enhanced for Tsc2 CKO mice compared with control mice. Finally, Tsc2 CKO mice manifested increased susceptibility to dextran sulfate sodium–induced colitis. Our results thus suggest that mTORC1 activity promotes the proliferation of, as well as the expression of Wnt target genes in, CECs and thereby contributes to colonic organogenesis and homeostasis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-70655-1</identifier><identifier>PMID: 32796887</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/532/2437 ; 631/80/641/83/2359 ; 692/4020/198 ; Ablation ; AKT protein ; Animals ; Autophagy ; Autophagy - genetics ; Cell Proliferation - genetics ; Cell Proliferation - physiology ; Cells, Cultured ; Colitis ; Colitis - genetics ; Colon ; Colon - cytology ; Dextran ; Dextran sulfate ; Epithelial cells ; Epithelial Cells - physiology ; External stimuli ; Genetic Predisposition to Disease ; Glycogen ; Glycogen synthase kinase 3 ; Glycogen Synthase Kinase 3 beta - metabolism ; Homeostasis ; Homeostasis - genetics ; Humanities and Social Sciences ; Intestine ; Kinases ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 1 - physiology ; Mice, Knockout ; multidisciplinary ; Multidisciplinary Sciences ; Organogenesis ; Organoids ; Phagocytosis ; Phosphorylation ; Protein-serine/threonine kinase ; Rapamycin ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Signal Transduction - genetics ; Signal Transduction - physiology ; Stem cell transplantation ; Stem cells ; TOR protein ; Tuberous sclerosis ; Tuberous Sclerosis Complex 2 ; Tuberous Sclerosis Complex 2 Protein - physiology ; Wnt protein</subject><ispartof>Scientific reports, 2020-08, Vol.10 (1), p.13810-13810, Article 13810</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000573282100002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c687t-f4cfaa9a7b86368867404cf4be14a352e4e04515cda425ff709a3b050a47dc4c3</citedby><cites>FETCH-LOGICAL-c687t-f4cfaa9a7b86368867404cf4be14a352e4e04515cda425ff709a3b050a47dc4c3</cites><orcidid>0000-0001-8571-4210 ; 0000-0002-9291-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427982/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427982/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32796887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotani, Takenori</creatorcontrib><creatorcontrib>Setiawan, Jajar</creatorcontrib><creatorcontrib>Konno, Tasuku</creatorcontrib><creatorcontrib>Ihara, Noriko</creatorcontrib><creatorcontrib>Okamoto, Saki</creatorcontrib><creatorcontrib>Saito, Yasuyuki</creatorcontrib><creatorcontrib>Murata, Yoji</creatorcontrib><creatorcontrib>Noda, Tetsuo</creatorcontrib><creatorcontrib>Matozaki, Takashi</creatorcontrib><title>Regulation of colonic epithelial cell homeostasis by mTORC1</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions such as proliferation and autophagy by various external stimuli. We here show that ablation of tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, specifically in intestinal epithelial cells of mice resulted in increased activity of mTORC1 of, as well as increased proliferative activity of, CECs. Such Tsc2 ablation also reduced the population of Lgr5-positive colonic stem cells and the expression of Wnt target genes in CECs. The stimulatory phosphorylation of the kinase Akt and inhibitory phosphorylation of glycogen synthase kinase 3β were both markedly decreased in the colon of the Tsc2 conditional knockout (CKO) mice. Development of colonic organoids with cryptlike structures was enhanced for Tsc2 CKO mice compared with control mice. Finally, Tsc2 CKO mice manifested increased susceptibility to dextran sulfate sodium–induced colitis. Our results thus suggest that mTORC1 activity promotes the proliferation of, as well as the expression of Wnt target genes in, CECs and thereby contributes to colonic organogenesis and homeostasis.</description><subject>631/532/2437</subject><subject>631/80/641/83/2359</subject><subject>692/4020/198</subject><subject>Ablation</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy - genetics</subject><subject>Cell Proliferation - genetics</subject><subject>Cell Proliferation - physiology</subject><subject>Cells, Cultured</subject><subject>Colitis</subject><subject>Colitis - genetics</subject><subject>Colon</subject><subject>Colon - cytology</subject><subject>Dextran</subject><subject>Dextran sulfate</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - physiology</subject><subject>External stimuli</subject><subject>Genetic Predisposition to Disease</subject><subject>Glycogen</subject><subject>Glycogen synthase kinase 3</subject><subject>Glycogen Synthase Kinase 3 beta - metabolism</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Intestine</subject><subject>Kinases</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - physiology</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Organogenesis</subject><subject>Organoids</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Protein-serine/threonine kinase</subject><subject>Rapamycin</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>TOR protein</subject><subject>Tuberous sclerosis</subject><subject>Tuberous Sclerosis Complex 2</subject><subject>Tuberous Sclerosis Complex 2 Protein - physiology</subject><subject>Wnt protein</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1r3DAQhk1paUKSP9BDMfRSKG70LZlCoZh-BAKBkJ6FJI93tdjWVrJT8u-rXSfbJIdSXSRGz7wazTtF8QajjxhRdZ4Y5rWqEEGVRILzCr8ojglivCKUkJePzkfFWUoblBcnNcP16-KIElkLpeRx8ekaVnNvJh_GMnSlC30YvSth66c19N70pYO-L9dhgJAmk3wq7V053FxdN_i0eNWZPsHZ_X5S_Pz29ab5UV1efb9ovlxWTig5VR1znTG1kVYJml8VkqEcYhYwM5QTYJBLxdy1hhHedRLVhlrEkWGydczRk-Ji0W2D2eht9IOJdzoYr_eBEFfaxMm7HjQQXtssb1FbMyGNIlhQ09LOtso5ZbPW50VrO9sBWgfjFE3_RPTpzejXehVutWS5Z4pkgff3AjH8miFNevBp1yMzQpiTJowyJgWueUbfPUM3YY5jbtWewkIQxTJFFsrFkFKE7lAMRnpntV6s1tlqvbda45z09vE3DikPxmZALcBvsKFLzsPo4IDtZkFSkruzGwvS-Gk_AU2Yxymnfvj_1EzThU6ZGFcQ_37yH_X_AZUS07o</recordid><startdate>20200814</startdate><enddate>20200814</enddate><creator>Kotani, Takenori</creator><creator>Setiawan, Jajar</creator><creator>Konno, Tasuku</creator><creator>Ihara, Noriko</creator><creator>Okamoto, Saki</creator><creator>Saito, Yasuyuki</creator><creator>Murata, Yoji</creator><creator>Noda, Tetsuo</creator><creator>Matozaki, Takashi</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8571-4210</orcidid><orcidid>https://orcid.org/0000-0002-9291-1383</orcidid></search><sort><creationdate>20200814</creationdate><title>Regulation of colonic epithelial cell homeostasis by mTORC1</title><author>Kotani, Takenori ; Setiawan, Jajar ; Konno, Tasuku ; Ihara, Noriko ; Okamoto, Saki ; Saito, Yasuyuki ; Murata, Yoji ; Noda, Tetsuo ; Matozaki, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c687t-f4cfaa9a7b86368867404cf4be14a352e4e04515cda425ff709a3b050a47dc4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/532/2437</topic><topic>631/80/641/83/2359</topic><topic>692/4020/198</topic><topic>Ablation</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy - genetics</topic><topic>Cell Proliferation - genetics</topic><topic>Cell Proliferation - physiology</topic><topic>Cells, Cultured</topic><topic>Colitis</topic><topic>Colitis - genetics</topic><topic>Colon</topic><topic>Colon - cytology</topic><topic>Dextran</topic><topic>Dextran sulfate</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - physiology</topic><topic>External stimuli</topic><topic>Genetic Predisposition to Disease</topic><topic>Glycogen</topic><topic>Glycogen synthase kinase 3</topic><topic>Glycogen Synthase Kinase 3 beta - metabolism</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Intestine</topic><topic>Kinases</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - physiology</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Organogenesis</topic><topic>Organoids</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Protein-serine/threonine kinase</topic><topic>Rapamycin</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>TOR protein</topic><topic>Tuberous sclerosis</topic><topic>Tuberous Sclerosis Complex 2</topic><topic>Tuberous Sclerosis Complex 2 Protein - physiology</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotani, Takenori</creatorcontrib><creatorcontrib>Setiawan, Jajar</creatorcontrib><creatorcontrib>Konno, Tasuku</creatorcontrib><creatorcontrib>Ihara, Noriko</creatorcontrib><creatorcontrib>Okamoto, Saki</creatorcontrib><creatorcontrib>Saito, Yasuyuki</creatorcontrib><creatorcontrib>Murata, Yoji</creatorcontrib><creatorcontrib>Noda, Tetsuo</creatorcontrib><creatorcontrib>Matozaki, Takashi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotani, Takenori</au><au>Setiawan, Jajar</au><au>Konno, Tasuku</au><au>Ihara, Noriko</au><au>Okamoto, Saki</au><au>Saito, Yasuyuki</au><au>Murata, Yoji</au><au>Noda, Tetsuo</au><au>Matozaki, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of colonic epithelial cell homeostasis by mTORC1</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2020-08-14</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>13810</spage><epage>13810</epage><pages>13810-13810</pages><artnum>13810</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions such as proliferation and autophagy by various external stimuli. We here show that ablation of tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, specifically in intestinal epithelial cells of mice resulted in increased activity of mTORC1 of, as well as increased proliferative activity of, CECs. Such Tsc2 ablation also reduced the population of Lgr5-positive colonic stem cells and the expression of Wnt target genes in CECs. The stimulatory phosphorylation of the kinase Akt and inhibitory phosphorylation of glycogen synthase kinase 3β were both markedly decreased in the colon of the Tsc2 conditional knockout (CKO) mice. Development of colonic organoids with cryptlike structures was enhanced for Tsc2 CKO mice compared with control mice. Finally, Tsc2 CKO mice manifested increased susceptibility to dextran sulfate sodium–induced colitis. Our results thus suggest that mTORC1 activity promotes the proliferation of, as well as the expression of Wnt target genes in, CECs and thereby contributes to colonic organogenesis and homeostasis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32796887</pmid><doi>10.1038/s41598-020-70655-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8571-4210</orcidid><orcidid>https://orcid.org/0000-0002-9291-1383</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-08, Vol.10 (1), p.13810-13810, Article 13810
issn 2045-2322
2045-2322
language eng
recordid cdi_proquest_journals_2434166284
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/532/2437
631/80/641/83/2359
692/4020/198
Ablation
AKT protein
Animals
Autophagy
Autophagy - genetics
Cell Proliferation - genetics
Cell Proliferation - physiology
Cells, Cultured
Colitis
Colitis - genetics
Colon
Colon - cytology
Dextran
Dextran sulfate
Epithelial cells
Epithelial Cells - physiology
External stimuli
Genetic Predisposition to Disease
Glycogen
Glycogen synthase kinase 3
Glycogen Synthase Kinase 3 beta - metabolism
Homeostasis
Homeostasis - genetics
Humanities and Social Sciences
Intestine
Kinases
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mechanistic Target of Rapamycin Complex 1 - physiology
Mice, Knockout
multidisciplinary
Multidisciplinary Sciences
Organogenesis
Organoids
Phagocytosis
Phosphorylation
Protein-serine/threonine kinase
Rapamycin
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
Signal Transduction - genetics
Signal Transduction - physiology
Stem cell transplantation
Stem cells
TOR protein
Tuberous sclerosis
Tuberous Sclerosis Complex 2
Tuberous Sclerosis Complex 2 Protein - physiology
Wnt protein
title Regulation of colonic epithelial cell homeostasis by mTORC1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20colonic%20epithelial%20cell%20homeostasis%20by%20mTORC1&rft.jtitle=Scientific%20reports&rft.au=Kotani,%20Takenori&rft.date=2020-08-14&rft.volume=10&rft.issue=1&rft.spage=13810&rft.epage=13810&rft.pages=13810-13810&rft.artnum=13810&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-70655-1&rft_dat=%3Cproquest_cross%3E2434166284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434166284&rft_id=info:pmid/32796887&rft_doaj_id=oai_doaj_org_article_e259b404b0d9467a82163ad3fbd8cc8b&rfr_iscdi=true