Regulation of colonic epithelial cell homeostasis by mTORC1
Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions su...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-08, Vol.10 (1), p.13810-13810, Article 13810 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13810 |
---|---|
container_issue | 1 |
container_start_page | 13810 |
container_title | Scientific reports |
container_volume | 10 |
creator | Kotani, Takenori Setiawan, Jajar Konno, Tasuku Ihara, Noriko Okamoto, Saki Saito, Yasuyuki Murata, Yoji Noda, Tetsuo Matozaki, Takashi |
description | Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions such as proliferation and autophagy by various external stimuli. We here show that ablation of tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, specifically in intestinal epithelial cells of mice resulted in increased activity of mTORC1 of, as well as increased proliferative activity of, CECs. Such Tsc2 ablation also reduced the population of Lgr5-positive colonic stem cells and the expression of Wnt target genes in CECs. The stimulatory phosphorylation of the kinase Akt and inhibitory phosphorylation of glycogen synthase kinase 3β were both markedly decreased in the colon of the Tsc2 conditional knockout (CKO) mice. Development of colonic organoids with cryptlike structures was enhanced for Tsc2 CKO mice compared with control mice. Finally, Tsc2 CKO mice manifested increased susceptibility to dextran sulfate sodium–induced colitis. Our results thus suggest that mTORC1 activity promotes the proliferation of, as well as the expression of Wnt target genes in, CECs and thereby contributes to colonic organogenesis and homeostasis. |
doi_str_mv | 10.1038/s41598-020-70655-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434166284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e259b404b0d9467a82163ad3fbd8cc8b</doaj_id><sourcerecordid>2434166284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c687t-f4cfaa9a7b86368867404cf4be14a352e4e04515cda425ff709a3b050a47dc4c3</originalsourceid><addsrcrecordid>eNqNkk1r3DAQhk1paUKSP9BDMfRSKG70LZlCoZh-BAKBkJ6FJI93tdjWVrJT8u-rXSfbJIdSXSRGz7wazTtF8QajjxhRdZ4Y5rWqEEGVRILzCr8ojglivCKUkJePzkfFWUoblBcnNcP16-KIElkLpeRx8ekaVnNvJh_GMnSlC30YvSth66c19N70pYO-L9dhgJAmk3wq7V053FxdN_i0eNWZPsHZ_X5S_Pz29ab5UV1efb9ovlxWTig5VR1znTG1kVYJml8VkqEcYhYwM5QTYJBLxdy1hhHedRLVhlrEkWGydczRk-Ji0W2D2eht9IOJdzoYr_eBEFfaxMm7HjQQXtssb1FbMyGNIlhQ09LOtso5ZbPW50VrO9sBWgfjFE3_RPTpzejXehVutWS5Z4pkgff3AjH8miFNevBp1yMzQpiTJowyJgWueUbfPUM3YY5jbtWewkIQxTJFFsrFkFKE7lAMRnpntV6s1tlqvbda45z09vE3DikPxmZALcBvsKFLzsPo4IDtZkFSkruzGwvS-Gk_AU2Yxymnfvj_1EzThU6ZGFcQ_37yH_X_AZUS07o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434166284</pqid></control><display><type>article</type><title>Regulation of colonic epithelial cell homeostasis by mTORC1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kotani, Takenori ; Setiawan, Jajar ; Konno, Tasuku ; Ihara, Noriko ; Okamoto, Saki ; Saito, Yasuyuki ; Murata, Yoji ; Noda, Tetsuo ; Matozaki, Takashi</creator><creatorcontrib>Kotani, Takenori ; Setiawan, Jajar ; Konno, Tasuku ; Ihara, Noriko ; Okamoto, Saki ; Saito, Yasuyuki ; Murata, Yoji ; Noda, Tetsuo ; Matozaki, Takashi</creatorcontrib><description>Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions such as proliferation and autophagy by various external stimuli. We here show that ablation of tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, specifically in intestinal epithelial cells of mice resulted in increased activity of mTORC1 of, as well as increased proliferative activity of, CECs. Such Tsc2 ablation also reduced the population of Lgr5-positive colonic stem cells and the expression of Wnt target genes in CECs. The stimulatory phosphorylation of the kinase Akt and inhibitory phosphorylation of glycogen synthase kinase 3β were both markedly decreased in the colon of the Tsc2 conditional knockout (CKO) mice. Development of colonic organoids with cryptlike structures was enhanced for Tsc2 CKO mice compared with control mice. Finally, Tsc2 CKO mice manifested increased susceptibility to dextran sulfate sodium–induced colitis. Our results thus suggest that mTORC1 activity promotes the proliferation of, as well as the expression of Wnt target genes in, CECs and thereby contributes to colonic organogenesis and homeostasis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-70655-1</identifier><identifier>PMID: 32796887</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/532/2437 ; 631/80/641/83/2359 ; 692/4020/198 ; Ablation ; AKT protein ; Animals ; Autophagy ; Autophagy - genetics ; Cell Proliferation - genetics ; Cell Proliferation - physiology ; Cells, Cultured ; Colitis ; Colitis - genetics ; Colon ; Colon - cytology ; Dextran ; Dextran sulfate ; Epithelial cells ; Epithelial Cells - physiology ; External stimuli ; Genetic Predisposition to Disease ; Glycogen ; Glycogen synthase kinase 3 ; Glycogen Synthase Kinase 3 beta - metabolism ; Homeostasis ; Homeostasis - genetics ; Humanities and Social Sciences ; Intestine ; Kinases ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 1 - physiology ; Mice, Knockout ; multidisciplinary ; Multidisciplinary Sciences ; Organogenesis ; Organoids ; Phagocytosis ; Phosphorylation ; Protein-serine/threonine kinase ; Rapamycin ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Signal Transduction - genetics ; Signal Transduction - physiology ; Stem cell transplantation ; Stem cells ; TOR protein ; Tuberous sclerosis ; Tuberous Sclerosis Complex 2 ; Tuberous Sclerosis Complex 2 Protein - physiology ; Wnt protein</subject><ispartof>Scientific reports, 2020-08, Vol.10 (1), p.13810-13810, Article 13810</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000573282100002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c687t-f4cfaa9a7b86368867404cf4be14a352e4e04515cda425ff709a3b050a47dc4c3</citedby><cites>FETCH-LOGICAL-c687t-f4cfaa9a7b86368867404cf4be14a352e4e04515cda425ff709a3b050a47dc4c3</cites><orcidid>0000-0001-8571-4210 ; 0000-0002-9291-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427982/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427982/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32796887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotani, Takenori</creatorcontrib><creatorcontrib>Setiawan, Jajar</creatorcontrib><creatorcontrib>Konno, Tasuku</creatorcontrib><creatorcontrib>Ihara, Noriko</creatorcontrib><creatorcontrib>Okamoto, Saki</creatorcontrib><creatorcontrib>Saito, Yasuyuki</creatorcontrib><creatorcontrib>Murata, Yoji</creatorcontrib><creatorcontrib>Noda, Tetsuo</creatorcontrib><creatorcontrib>Matozaki, Takashi</creatorcontrib><title>Regulation of colonic epithelial cell homeostasis by mTORC1</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions such as proliferation and autophagy by various external stimuli. We here show that ablation of tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, specifically in intestinal epithelial cells of mice resulted in increased activity of mTORC1 of, as well as increased proliferative activity of, CECs. Such Tsc2 ablation also reduced the population of Lgr5-positive colonic stem cells and the expression of Wnt target genes in CECs. The stimulatory phosphorylation of the kinase Akt and inhibitory phosphorylation of glycogen synthase kinase 3β were both markedly decreased in the colon of the Tsc2 conditional knockout (CKO) mice. Development of colonic organoids with cryptlike structures was enhanced for Tsc2 CKO mice compared with control mice. Finally, Tsc2 CKO mice manifested increased susceptibility to dextran sulfate sodium–induced colitis. Our results thus suggest that mTORC1 activity promotes the proliferation of, as well as the expression of Wnt target genes in, CECs and thereby contributes to colonic organogenesis and homeostasis.</description><subject>631/532/2437</subject><subject>631/80/641/83/2359</subject><subject>692/4020/198</subject><subject>Ablation</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy - genetics</subject><subject>Cell Proliferation - genetics</subject><subject>Cell Proliferation - physiology</subject><subject>Cells, Cultured</subject><subject>Colitis</subject><subject>Colitis - genetics</subject><subject>Colon</subject><subject>Colon - cytology</subject><subject>Dextran</subject><subject>Dextran sulfate</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - physiology</subject><subject>External stimuli</subject><subject>Genetic Predisposition to Disease</subject><subject>Glycogen</subject><subject>Glycogen synthase kinase 3</subject><subject>Glycogen Synthase Kinase 3 beta - metabolism</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Intestine</subject><subject>Kinases</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - physiology</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Organogenesis</subject><subject>Organoids</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Protein-serine/threonine kinase</subject><subject>Rapamycin</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>TOR protein</subject><subject>Tuberous sclerosis</subject><subject>Tuberous Sclerosis Complex 2</subject><subject>Tuberous Sclerosis Complex 2 Protein - physiology</subject><subject>Wnt protein</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1r3DAQhk1paUKSP9BDMfRSKG70LZlCoZh-BAKBkJ6FJI93tdjWVrJT8u-rXSfbJIdSXSRGz7wazTtF8QajjxhRdZ4Y5rWqEEGVRILzCr8ojglivCKUkJePzkfFWUoblBcnNcP16-KIElkLpeRx8ekaVnNvJh_GMnSlC30YvSth66c19N70pYO-L9dhgJAmk3wq7V053FxdN_i0eNWZPsHZ_X5S_Pz29ab5UV1efb9ovlxWTig5VR1znTG1kVYJml8VkqEcYhYwM5QTYJBLxdy1hhHedRLVhlrEkWGydczRk-Ji0W2D2eht9IOJdzoYr_eBEFfaxMm7HjQQXtssb1FbMyGNIlhQ09LOtso5ZbPW50VrO9sBWgfjFE3_RPTpzejXehVutWS5Z4pkgff3AjH8miFNevBp1yMzQpiTJowyJgWueUbfPUM3YY5jbtWewkIQxTJFFsrFkFKE7lAMRnpntV6s1tlqvbda45z09vE3DikPxmZALcBvsKFLzsPo4IDtZkFSkruzGwvS-Gk_AU2Yxymnfvj_1EzThU6ZGFcQ_37yH_X_AZUS07o</recordid><startdate>20200814</startdate><enddate>20200814</enddate><creator>Kotani, Takenori</creator><creator>Setiawan, Jajar</creator><creator>Konno, Tasuku</creator><creator>Ihara, Noriko</creator><creator>Okamoto, Saki</creator><creator>Saito, Yasuyuki</creator><creator>Murata, Yoji</creator><creator>Noda, Tetsuo</creator><creator>Matozaki, Takashi</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8571-4210</orcidid><orcidid>https://orcid.org/0000-0002-9291-1383</orcidid></search><sort><creationdate>20200814</creationdate><title>Regulation of colonic epithelial cell homeostasis by mTORC1</title><author>Kotani, Takenori ; Setiawan, Jajar ; Konno, Tasuku ; Ihara, Noriko ; Okamoto, Saki ; Saito, Yasuyuki ; Murata, Yoji ; Noda, Tetsuo ; Matozaki, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c687t-f4cfaa9a7b86368867404cf4be14a352e4e04515cda425ff709a3b050a47dc4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/532/2437</topic><topic>631/80/641/83/2359</topic><topic>692/4020/198</topic><topic>Ablation</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy - genetics</topic><topic>Cell Proliferation - genetics</topic><topic>Cell Proliferation - physiology</topic><topic>Cells, Cultured</topic><topic>Colitis</topic><topic>Colitis - genetics</topic><topic>Colon</topic><topic>Colon - cytology</topic><topic>Dextran</topic><topic>Dextran sulfate</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - physiology</topic><topic>External stimuli</topic><topic>Genetic Predisposition to Disease</topic><topic>Glycogen</topic><topic>Glycogen synthase kinase 3</topic><topic>Glycogen Synthase Kinase 3 beta - metabolism</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Intestine</topic><topic>Kinases</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - physiology</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Organogenesis</topic><topic>Organoids</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Protein-serine/threonine kinase</topic><topic>Rapamycin</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>TOR protein</topic><topic>Tuberous sclerosis</topic><topic>Tuberous Sclerosis Complex 2</topic><topic>Tuberous Sclerosis Complex 2 Protein - physiology</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotani, Takenori</creatorcontrib><creatorcontrib>Setiawan, Jajar</creatorcontrib><creatorcontrib>Konno, Tasuku</creatorcontrib><creatorcontrib>Ihara, Noriko</creatorcontrib><creatorcontrib>Okamoto, Saki</creatorcontrib><creatorcontrib>Saito, Yasuyuki</creatorcontrib><creatorcontrib>Murata, Yoji</creatorcontrib><creatorcontrib>Noda, Tetsuo</creatorcontrib><creatorcontrib>Matozaki, Takashi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotani, Takenori</au><au>Setiawan, Jajar</au><au>Konno, Tasuku</au><au>Ihara, Noriko</au><au>Okamoto, Saki</au><au>Saito, Yasuyuki</au><au>Murata, Yoji</au><au>Noda, Tetsuo</au><au>Matozaki, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of colonic epithelial cell homeostasis by mTORC1</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2020-08-14</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>13810</spage><epage>13810</epage><pages>13810-13810</pages><artnum>13810</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Cell signaling important for homeostatic regulation of colonic epithelial cells (CECs) remains poorly understood. Mammalian target of rapamycin complex 1 (mTORC1), a protein complex that contains the serine-threonine kinase mTOR, mediates signaling that underlies the control of cellular functions such as proliferation and autophagy by various external stimuli. We here show that ablation of tuberous sclerosis complex 2 (Tsc2), a negative regulator of mTORC1, specifically in intestinal epithelial cells of mice resulted in increased activity of mTORC1 of, as well as increased proliferative activity of, CECs. Such Tsc2 ablation also reduced the population of Lgr5-positive colonic stem cells and the expression of Wnt target genes in CECs. The stimulatory phosphorylation of the kinase Akt and inhibitory phosphorylation of glycogen synthase kinase 3β were both markedly decreased in the colon of the Tsc2 conditional knockout (CKO) mice. Development of colonic organoids with cryptlike structures was enhanced for Tsc2 CKO mice compared with control mice. Finally, Tsc2 CKO mice manifested increased susceptibility to dextran sulfate sodium–induced colitis. Our results thus suggest that mTORC1 activity promotes the proliferation of, as well as the expression of Wnt target genes in, CECs and thereby contributes to colonic organogenesis and homeostasis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32796887</pmid><doi>10.1038/s41598-020-70655-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8571-4210</orcidid><orcidid>https://orcid.org/0000-0002-9291-1383</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-08, Vol.10 (1), p.13810-13810, Article 13810 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_proquest_journals_2434166284 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/532/2437 631/80/641/83/2359 692/4020/198 Ablation AKT protein Animals Autophagy Autophagy - genetics Cell Proliferation - genetics Cell Proliferation - physiology Cells, Cultured Colitis Colitis - genetics Colon Colon - cytology Dextran Dextran sulfate Epithelial cells Epithelial Cells - physiology External stimuli Genetic Predisposition to Disease Glycogen Glycogen synthase kinase 3 Glycogen Synthase Kinase 3 beta - metabolism Homeostasis Homeostasis - genetics Humanities and Social Sciences Intestine Kinases Mechanistic Target of Rapamycin Complex 1 - metabolism Mechanistic Target of Rapamycin Complex 1 - physiology Mice, Knockout multidisciplinary Multidisciplinary Sciences Organogenesis Organoids Phagocytosis Phosphorylation Protein-serine/threonine kinase Rapamycin Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Signal Transduction - genetics Signal Transduction - physiology Stem cell transplantation Stem cells TOR protein Tuberous sclerosis Tuberous Sclerosis Complex 2 Tuberous Sclerosis Complex 2 Protein - physiology Wnt protein |
title | Regulation of colonic epithelial cell homeostasis by mTORC1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20colonic%20epithelial%20cell%20homeostasis%20by%20mTORC1&rft.jtitle=Scientific%20reports&rft.au=Kotani,%20Takenori&rft.date=2020-08-14&rft.volume=10&rft.issue=1&rft.spage=13810&rft.epage=13810&rft.pages=13810-13810&rft.artnum=13810&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-70655-1&rft_dat=%3Cproquest_cross%3E2434166284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434166284&rft_id=info:pmid/32796887&rft_doaj_id=oai_doaj_org_article_e259b404b0d9467a82163ad3fbd8cc8b&rfr_iscdi=true |