Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces

In comparison to tactile sensors, optical techniques can provide a fast, nondestructive profile/areal surface measurement solution. Nonetheless, high measurement noise, unmeasured points, and outliers are often observed in optical measurement, particularly for structured surfaces. To alleviate their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2020-09, Vol.69 (9), p.6509-6517
Hauptverfasser: Lou, Shan, Tang, Dawei, Zeng, Wenhan, Zhang, Tao, Gao, Feng, Muhamedsalih, Hussam, Jiang, Xiangqian, Scott, Paul J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6517
container_issue 9
container_start_page 6509
container_title IEEE transactions on instrumentation and measurement
container_volume 69
creator Lou, Shan
Tang, Dawei
Zeng, Wenhan
Zhang, Tao
Gao, Feng
Muhamedsalih, Hussam
Jiang, Xiangqian
Scott, Paul J.
description In comparison to tactile sensors, optical techniques can provide a fast, nondestructive profile/areal surface measurement solution. Nonetheless, high measurement noise, unmeasured points, and outliers are often observed in optical measurement, particularly for structured surfaces. To alleviate their detrimental impacts on the characterization of surface topography as well as the examination of micro/nanoscale geometries, a post processing filtering technique, i.e., the clustering filter, which is essentially an iterative process to find the aggregation center of a cluster of points, is implemented. The clustering filter is particularly useful for noises and outlier suppression for optical measurement of structured surfaces due to its edge-preserving capability. Five surface samples with structured features are measured by an in-house developed dispersive interferometer and a commercial white light interferometer, thereafter the measured surface data are filtered by the clustering filter. Both noise and outliers are suppressed, which not only facilitates the visualization and characterization of surface topography, but also enables the accurate evaluation of local functional geometries.
doi_str_mv 10.1109/TIM.2020.2967571
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2434122607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9014495</ieee_id><sourcerecordid>2434122607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-832ba5965310262a26df4d0155838b6a61768e8434ae576c1a765ef1af754f0b3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJNh-7x1L8KLT20HoO6W4iKdvdmGQP_vemtHia4fF-b5iH0COBGSFQv-yW6xkFCjNaC8kluUITwrksaiHoNZoAkKqoGRe36C7GAwBIweQE-bn3nWt0ckOPB4sX3RiTCa7_xm-uyxu2Q8Cfg4sG677FmzF1Lqvb0ftgYjxhrscbn3JIh9dGxzGYo-nTKW2bwtikLLQZCFY3Jt6jG6u7aB4uc4q-3l53i49itXlfLuaroikrSEVV0r3mteAlASqopqK1rIX8UlVWe6EFkaIyFSuZNlyKhmgpuLFEW8mZhX05Rc_nXB-Gn9HEpA7DGPp8UtFMEUoFyOyCs6sJQ4zBWOWDO-rwqwioU68q96pOvapLrxl5OiPOGPNvr4EwVvPyD4NAdD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434122607</pqid></control><display><type>article</type><title>Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces</title><source>IEEE Electronic Library Online</source><creator>Lou, Shan ; Tang, Dawei ; Zeng, Wenhan ; Zhang, Tao ; Gao, Feng ; Muhamedsalih, Hussam ; Jiang, Xiangqian ; Scott, Paul J.</creator><creatorcontrib>Lou, Shan ; Tang, Dawei ; Zeng, Wenhan ; Zhang, Tao ; Gao, Feng ; Muhamedsalih, Hussam ; Jiang, Xiangqian ; Scott, Paul J.</creatorcontrib><description>In comparison to tactile sensors, optical techniques can provide a fast, nondestructive profile/areal surface measurement solution. Nonetheless, high measurement noise, unmeasured points, and outliers are often observed in optical measurement, particularly for structured surfaces. To alleviate their detrimental impacts on the characterization of surface topography as well as the examination of micro/nanoscale geometries, a post processing filtering technique, i.e., the clustering filter, which is essentially an iterative process to find the aggregation center of a cluster of points, is implemented. The clustering filter is particularly useful for noises and outlier suppression for optical measurement of structured surfaces due to its edge-preserving capability. Five surface samples with structured features are measured by an in-house developed dispersive interferometer and a commercial white light interferometer, thereafter the measured surface data are filtered by the clustering filter. Both noise and outliers are suppressed, which not only facilitates the visualization and characterization of surface topography, but also enables the accurate evaluation of local functional geometries.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.2967571</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Clustering filter ; de-noising algorithm ; Noise ; Noise measurement ; Optical filters ; Optical interferometry ; Optical measurement ; optical metrology ; Optical surface waves ; Optical variables measurement ; Optics ; Outliers (statistics) ; structured surface ; surface measurement ; Surface topography ; Surface treatment ; Tactile sensors (robotics) ; Topography ; White light</subject><ispartof>IEEE transactions on instrumentation and measurement, 2020-09, Vol.69 (9), p.6509-6517</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-832ba5965310262a26df4d0155838b6a61768e8434ae576c1a765ef1af754f0b3</citedby><cites>FETCH-LOGICAL-c380t-832ba5965310262a26df4d0155838b6a61768e8434ae576c1a765ef1af754f0b3</cites><orcidid>0000-0002-8615-1293 ; 0000-0001-7949-8507 ; 0000-0002-6092-3101 ; 0000-0001-6087-3960 ; 0000-0002-8426-5596 ; 0000-0002-8914-7038 ; 0000-0001-9125-5516 ; 0000-0003-3835-6929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9014495$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Lou, Shan</creatorcontrib><creatorcontrib>Tang, Dawei</creatorcontrib><creatorcontrib>Zeng, Wenhan</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Muhamedsalih, Hussam</creatorcontrib><creatorcontrib>Jiang, Xiangqian</creatorcontrib><creatorcontrib>Scott, Paul J.</creatorcontrib><title>Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In comparison to tactile sensors, optical techniques can provide a fast, nondestructive profile/areal surface measurement solution. Nonetheless, high measurement noise, unmeasured points, and outliers are often observed in optical measurement, particularly for structured surfaces. To alleviate their detrimental impacts on the characterization of surface topography as well as the examination of micro/nanoscale geometries, a post processing filtering technique, i.e., the clustering filter, which is essentially an iterative process to find the aggregation center of a cluster of points, is implemented. The clustering filter is particularly useful for noises and outlier suppression for optical measurement of structured surfaces due to its edge-preserving capability. Five surface samples with structured features are measured by an in-house developed dispersive interferometer and a commercial white light interferometer, thereafter the measured surface data are filtered by the clustering filter. Both noise and outliers are suppressed, which not only facilitates the visualization and characterization of surface topography, but also enables the accurate evaluation of local functional geometries.</description><subject>Clustering</subject><subject>Clustering filter</subject><subject>de-noising algorithm</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Optical filters</subject><subject>Optical interferometry</subject><subject>Optical measurement</subject><subject>optical metrology</subject><subject>Optical surface waves</subject><subject>Optical variables measurement</subject><subject>Optics</subject><subject>Outliers (statistics)</subject><subject>structured surface</subject><subject>surface measurement</subject><subject>Surface topography</subject><subject>Surface treatment</subject><subject>Tactile sensors (robotics)</subject><subject>Topography</subject><subject>White light</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJNh-7x1L8KLT20HoO6W4iKdvdmGQP_vemtHia4fF-b5iH0COBGSFQv-yW6xkFCjNaC8kluUITwrksaiHoNZoAkKqoGRe36C7GAwBIweQE-bn3nWt0ckOPB4sX3RiTCa7_xm-uyxu2Q8Cfg4sG677FmzF1Lqvb0ftgYjxhrscbn3JIh9dGxzGYo-nTKW2bwtikLLQZCFY3Jt6jG6u7aB4uc4q-3l53i49itXlfLuaroikrSEVV0r3mteAlASqopqK1rIX8UlVWe6EFkaIyFSuZNlyKhmgpuLFEW8mZhX05Rc_nXB-Gn9HEpA7DGPp8UtFMEUoFyOyCs6sJQ4zBWOWDO-rwqwioU68q96pOvapLrxl5OiPOGPNvr4EwVvPyD4NAdD8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lou, Shan</creator><creator>Tang, Dawei</creator><creator>Zeng, Wenhan</creator><creator>Zhang, Tao</creator><creator>Gao, Feng</creator><creator>Muhamedsalih, Hussam</creator><creator>Jiang, Xiangqian</creator><creator>Scott, Paul J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8615-1293</orcidid><orcidid>https://orcid.org/0000-0001-7949-8507</orcidid><orcidid>https://orcid.org/0000-0002-6092-3101</orcidid><orcidid>https://orcid.org/0000-0001-6087-3960</orcidid><orcidid>https://orcid.org/0000-0002-8426-5596</orcidid><orcidid>https://orcid.org/0000-0002-8914-7038</orcidid><orcidid>https://orcid.org/0000-0001-9125-5516</orcidid><orcidid>https://orcid.org/0000-0003-3835-6929</orcidid></search><sort><creationdate>20200901</creationdate><title>Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces</title><author>Lou, Shan ; Tang, Dawei ; Zeng, Wenhan ; Zhang, Tao ; Gao, Feng ; Muhamedsalih, Hussam ; Jiang, Xiangqian ; Scott, Paul J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-832ba5965310262a26df4d0155838b6a61768e8434ae576c1a765ef1af754f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Clustering filter</topic><topic>de-noising algorithm</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Optical filters</topic><topic>Optical interferometry</topic><topic>Optical measurement</topic><topic>optical metrology</topic><topic>Optical surface waves</topic><topic>Optical variables measurement</topic><topic>Optics</topic><topic>Outliers (statistics)</topic><topic>structured surface</topic><topic>surface measurement</topic><topic>Surface topography</topic><topic>Surface treatment</topic><topic>Tactile sensors (robotics)</topic><topic>Topography</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Shan</creatorcontrib><creatorcontrib>Tang, Dawei</creatorcontrib><creatorcontrib>Zeng, Wenhan</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Muhamedsalih, Hussam</creatorcontrib><creatorcontrib>Jiang, Xiangqian</creatorcontrib><creatorcontrib>Scott, Paul J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Shan</au><au>Tang, Dawei</au><au>Zeng, Wenhan</au><au>Zhang, Tao</au><au>Gao, Feng</au><au>Muhamedsalih, Hussam</au><au>Jiang, Xiangqian</au><au>Scott, Paul J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>69</volume><issue>9</issue><spage>6509</spage><epage>6517</epage><pages>6509-6517</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In comparison to tactile sensors, optical techniques can provide a fast, nondestructive profile/areal surface measurement solution. Nonetheless, high measurement noise, unmeasured points, and outliers are often observed in optical measurement, particularly for structured surfaces. To alleviate their detrimental impacts on the characterization of surface topography as well as the examination of micro/nanoscale geometries, a post processing filtering technique, i.e., the clustering filter, which is essentially an iterative process to find the aggregation center of a cluster of points, is implemented. The clustering filter is particularly useful for noises and outlier suppression for optical measurement of structured surfaces due to its edge-preserving capability. Five surface samples with structured features are measured by an in-house developed dispersive interferometer and a commercial white light interferometer, thereafter the measured surface data are filtered by the clustering filter. Both noise and outliers are suppressed, which not only facilitates the visualization and characterization of surface topography, but also enables the accurate evaluation of local functional geometries.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.2967571</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8615-1293</orcidid><orcidid>https://orcid.org/0000-0001-7949-8507</orcidid><orcidid>https://orcid.org/0000-0002-6092-3101</orcidid><orcidid>https://orcid.org/0000-0001-6087-3960</orcidid><orcidid>https://orcid.org/0000-0002-8426-5596</orcidid><orcidid>https://orcid.org/0000-0002-8914-7038</orcidid><orcidid>https://orcid.org/0000-0001-9125-5516</orcidid><orcidid>https://orcid.org/0000-0003-3835-6929</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2020-09, Vol.69 (9), p.6509-6517
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2434122607
source IEEE Electronic Library Online
subjects Clustering
Clustering filter
de-noising algorithm
Noise
Noise measurement
Optical filters
Optical interferometry
Optical measurement
optical metrology
Optical surface waves
Optical variables measurement
Optics
Outliers (statistics)
structured surface
surface measurement
Surface topography
Surface treatment
Tactile sensors (robotics)
Topography
White light
title Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Clustering%20Filter%20for%20Noise%20and%20Outlier%20Suppression%20in%20Optical%20Measurement%20of%20Structured%20Surfaces&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Lou,%20Shan&rft.date=2020-09-01&rft.volume=69&rft.issue=9&rft.spage=6509&rft.epage=6517&rft.pages=6509-6517&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.2967571&rft_dat=%3Cproquest_ieee_%3E2434122607%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434122607&rft_id=info:pmid/&rft_ieee_id=9014495&rfr_iscdi=true