Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces
In comparison to tactile sensors, optical techniques can provide a fast, nondestructive profile/areal surface measurement solution. Nonetheless, high measurement noise, unmeasured points, and outliers are often observed in optical measurement, particularly for structured surfaces. To alleviate their...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2020-09, Vol.69 (9), p.6509-6517 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6517 |
---|---|
container_issue | 9 |
container_start_page | 6509 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 69 |
creator | Lou, Shan Tang, Dawei Zeng, Wenhan Zhang, Tao Gao, Feng Muhamedsalih, Hussam Jiang, Xiangqian Scott, Paul J. |
description | In comparison to tactile sensors, optical techniques can provide a fast, nondestructive profile/areal surface measurement solution. Nonetheless, high measurement noise, unmeasured points, and outliers are often observed in optical measurement, particularly for structured surfaces. To alleviate their detrimental impacts on the characterization of surface topography as well as the examination of micro/nanoscale geometries, a post processing filtering technique, i.e., the clustering filter, which is essentially an iterative process to find the aggregation center of a cluster of points, is implemented. The clustering filter is particularly useful for noises and outlier suppression for optical measurement of structured surfaces due to its edge-preserving capability. Five surface samples with structured features are measured by an in-house developed dispersive interferometer and a commercial white light interferometer, thereafter the measured surface data are filtered by the clustering filter. Both noise and outliers are suppressed, which not only facilitates the visualization and characterization of surface topography, but also enables the accurate evaluation of local functional geometries. |
doi_str_mv | 10.1109/TIM.2020.2967571 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2434122607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9014495</ieee_id><sourcerecordid>2434122607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-832ba5965310262a26df4d0155838b6a61768e8434ae576c1a765ef1af754f0b3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJNh-7x1L8KLT20HoO6W4iKdvdmGQP_vemtHia4fF-b5iH0COBGSFQv-yW6xkFCjNaC8kluUITwrksaiHoNZoAkKqoGRe36C7GAwBIweQE-bn3nWt0ckOPB4sX3RiTCa7_xm-uyxu2Q8Cfg4sG677FmzF1Lqvb0ftgYjxhrscbn3JIh9dGxzGYo-nTKW2bwtikLLQZCFY3Jt6jG6u7aB4uc4q-3l53i49itXlfLuaroikrSEVV0r3mteAlASqopqK1rIX8UlVWe6EFkaIyFSuZNlyKhmgpuLFEW8mZhX05Rc_nXB-Gn9HEpA7DGPp8UtFMEUoFyOyCs6sJQ4zBWOWDO-rwqwioU68q96pOvapLrxl5OiPOGPNvr4EwVvPyD4NAdD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434122607</pqid></control><display><type>article</type><title>Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces</title><source>IEEE Electronic Library Online</source><creator>Lou, Shan ; Tang, Dawei ; Zeng, Wenhan ; Zhang, Tao ; Gao, Feng ; Muhamedsalih, Hussam ; Jiang, Xiangqian ; Scott, Paul J.</creator><creatorcontrib>Lou, Shan ; Tang, Dawei ; Zeng, Wenhan ; Zhang, Tao ; Gao, Feng ; Muhamedsalih, Hussam ; Jiang, Xiangqian ; Scott, Paul J.</creatorcontrib><description>In comparison to tactile sensors, optical techniques can provide a fast, nondestructive profile/areal surface measurement solution. Nonetheless, high measurement noise, unmeasured points, and outliers are often observed in optical measurement, particularly for structured surfaces. To alleviate their detrimental impacts on the characterization of surface topography as well as the examination of micro/nanoscale geometries, a post processing filtering technique, i.e., the clustering filter, which is essentially an iterative process to find the aggregation center of a cluster of points, is implemented. The clustering filter is particularly useful for noises and outlier suppression for optical measurement of structured surfaces due to its edge-preserving capability. Five surface samples with structured features are measured by an in-house developed dispersive interferometer and a commercial white light interferometer, thereafter the measured surface data are filtered by the clustering filter. Both noise and outliers are suppressed, which not only facilitates the visualization and characterization of surface topography, but also enables the accurate evaluation of local functional geometries.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.2967571</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Clustering filter ; de-noising algorithm ; Noise ; Noise measurement ; Optical filters ; Optical interferometry ; Optical measurement ; optical metrology ; Optical surface waves ; Optical variables measurement ; Optics ; Outliers (statistics) ; structured surface ; surface measurement ; Surface topography ; Surface treatment ; Tactile sensors (robotics) ; Topography ; White light</subject><ispartof>IEEE transactions on instrumentation and measurement, 2020-09, Vol.69 (9), p.6509-6517</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-832ba5965310262a26df4d0155838b6a61768e8434ae576c1a765ef1af754f0b3</citedby><cites>FETCH-LOGICAL-c380t-832ba5965310262a26df4d0155838b6a61768e8434ae576c1a765ef1af754f0b3</cites><orcidid>0000-0002-8615-1293 ; 0000-0001-7949-8507 ; 0000-0002-6092-3101 ; 0000-0001-6087-3960 ; 0000-0002-8426-5596 ; 0000-0002-8914-7038 ; 0000-0001-9125-5516 ; 0000-0003-3835-6929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9014495$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Lou, Shan</creatorcontrib><creatorcontrib>Tang, Dawei</creatorcontrib><creatorcontrib>Zeng, Wenhan</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Muhamedsalih, Hussam</creatorcontrib><creatorcontrib>Jiang, Xiangqian</creatorcontrib><creatorcontrib>Scott, Paul J.</creatorcontrib><title>Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In comparison to tactile sensors, optical techniques can provide a fast, nondestructive profile/areal surface measurement solution. Nonetheless, high measurement noise, unmeasured points, and outliers are often observed in optical measurement, particularly for structured surfaces. To alleviate their detrimental impacts on the characterization of surface topography as well as the examination of micro/nanoscale geometries, a post processing filtering technique, i.e., the clustering filter, which is essentially an iterative process to find the aggregation center of a cluster of points, is implemented. The clustering filter is particularly useful for noises and outlier suppression for optical measurement of structured surfaces due to its edge-preserving capability. Five surface samples with structured features are measured by an in-house developed dispersive interferometer and a commercial white light interferometer, thereafter the measured surface data are filtered by the clustering filter. Both noise and outliers are suppressed, which not only facilitates the visualization and characterization of surface topography, but also enables the accurate evaluation of local functional geometries.</description><subject>Clustering</subject><subject>Clustering filter</subject><subject>de-noising algorithm</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Optical filters</subject><subject>Optical interferometry</subject><subject>Optical measurement</subject><subject>optical metrology</subject><subject>Optical surface waves</subject><subject>Optical variables measurement</subject><subject>Optics</subject><subject>Outliers (statistics)</subject><subject>structured surface</subject><subject>surface measurement</subject><subject>Surface topography</subject><subject>Surface treatment</subject><subject>Tactile sensors (robotics)</subject><subject>Topography</subject><subject>White light</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJNh-7x1L8KLT20HoO6W4iKdvdmGQP_vemtHia4fF-b5iH0COBGSFQv-yW6xkFCjNaC8kluUITwrksaiHoNZoAkKqoGRe36C7GAwBIweQE-bn3nWt0ckOPB4sX3RiTCa7_xm-uyxu2Q8Cfg4sG677FmzF1Lqvb0ftgYjxhrscbn3JIh9dGxzGYo-nTKW2bwtikLLQZCFY3Jt6jG6u7aB4uc4q-3l53i49itXlfLuaroikrSEVV0r3mteAlASqopqK1rIX8UlVWe6EFkaIyFSuZNlyKhmgpuLFEW8mZhX05Rc_nXB-Gn9HEpA7DGPp8UtFMEUoFyOyCs6sJQ4zBWOWDO-rwqwioU68q96pOvapLrxl5OiPOGPNvr4EwVvPyD4NAdD8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lou, Shan</creator><creator>Tang, Dawei</creator><creator>Zeng, Wenhan</creator><creator>Zhang, Tao</creator><creator>Gao, Feng</creator><creator>Muhamedsalih, Hussam</creator><creator>Jiang, Xiangqian</creator><creator>Scott, Paul J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8615-1293</orcidid><orcidid>https://orcid.org/0000-0001-7949-8507</orcidid><orcidid>https://orcid.org/0000-0002-6092-3101</orcidid><orcidid>https://orcid.org/0000-0001-6087-3960</orcidid><orcidid>https://orcid.org/0000-0002-8426-5596</orcidid><orcidid>https://orcid.org/0000-0002-8914-7038</orcidid><orcidid>https://orcid.org/0000-0001-9125-5516</orcidid><orcidid>https://orcid.org/0000-0003-3835-6929</orcidid></search><sort><creationdate>20200901</creationdate><title>Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces</title><author>Lou, Shan ; Tang, Dawei ; Zeng, Wenhan ; Zhang, Tao ; Gao, Feng ; Muhamedsalih, Hussam ; Jiang, Xiangqian ; Scott, Paul J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-832ba5965310262a26df4d0155838b6a61768e8434ae576c1a765ef1af754f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Clustering filter</topic><topic>de-noising algorithm</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Optical filters</topic><topic>Optical interferometry</topic><topic>Optical measurement</topic><topic>optical metrology</topic><topic>Optical surface waves</topic><topic>Optical variables measurement</topic><topic>Optics</topic><topic>Outliers (statistics)</topic><topic>structured surface</topic><topic>surface measurement</topic><topic>Surface topography</topic><topic>Surface treatment</topic><topic>Tactile sensors (robotics)</topic><topic>Topography</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Shan</creatorcontrib><creatorcontrib>Tang, Dawei</creatorcontrib><creatorcontrib>Zeng, Wenhan</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Muhamedsalih, Hussam</creatorcontrib><creatorcontrib>Jiang, Xiangqian</creatorcontrib><creatorcontrib>Scott, Paul J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Shan</au><au>Tang, Dawei</au><au>Zeng, Wenhan</au><au>Zhang, Tao</au><au>Gao, Feng</au><au>Muhamedsalih, Hussam</au><au>Jiang, Xiangqian</au><au>Scott, Paul J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>69</volume><issue>9</issue><spage>6509</spage><epage>6517</epage><pages>6509-6517</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In comparison to tactile sensors, optical techniques can provide a fast, nondestructive profile/areal surface measurement solution. Nonetheless, high measurement noise, unmeasured points, and outliers are often observed in optical measurement, particularly for structured surfaces. To alleviate their detrimental impacts on the characterization of surface topography as well as the examination of micro/nanoscale geometries, a post processing filtering technique, i.e., the clustering filter, which is essentially an iterative process to find the aggregation center of a cluster of points, is implemented. The clustering filter is particularly useful for noises and outlier suppression for optical measurement of structured surfaces due to its edge-preserving capability. Five surface samples with structured features are measured by an in-house developed dispersive interferometer and a commercial white light interferometer, thereafter the measured surface data are filtered by the clustering filter. Both noise and outliers are suppressed, which not only facilitates the visualization and characterization of surface topography, but also enables the accurate evaluation of local functional geometries.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.2967571</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8615-1293</orcidid><orcidid>https://orcid.org/0000-0001-7949-8507</orcidid><orcidid>https://orcid.org/0000-0002-6092-3101</orcidid><orcidid>https://orcid.org/0000-0001-6087-3960</orcidid><orcidid>https://orcid.org/0000-0002-8426-5596</orcidid><orcidid>https://orcid.org/0000-0002-8914-7038</orcidid><orcidid>https://orcid.org/0000-0001-9125-5516</orcidid><orcidid>https://orcid.org/0000-0003-3835-6929</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2020-09, Vol.69 (9), p.6509-6517 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2434122607 |
source | IEEE Electronic Library Online |
subjects | Clustering Clustering filter de-noising algorithm Noise Noise measurement Optical filters Optical interferometry Optical measurement optical metrology Optical surface waves Optical variables measurement Optics Outliers (statistics) structured surface surface measurement Surface topography Surface treatment Tactile sensors (robotics) Topography White light |
title | Application of Clustering Filter for Noise and Outlier Suppression in Optical Measurement of Structured Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Clustering%20Filter%20for%20Noise%20and%20Outlier%20Suppression%20in%20Optical%20Measurement%20of%20Structured%20Surfaces&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Lou,%20Shan&rft.date=2020-09-01&rft.volume=69&rft.issue=9&rft.spage=6509&rft.epage=6517&rft.pages=6509-6517&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.2967571&rft_dat=%3Cproquest_ieee_%3E2434122607%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434122607&rft_id=info:pmid/&rft_ieee_id=9014495&rfr_iscdi=true |