High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine

Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2020-09, Vol.69 (9), p.6165-6174
Hauptverfasser: Zaghari, Bahareh, Weddell, Alex S., Esmaeili, Kamran, Bashir, Imran, Harvey, Terry J., White, Neil M., Mirring, Patrick, Wang, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6174
container_issue 9
container_start_page 6165
container_title IEEE transactions on instrumentation and measurement
container_volume 69
creator Zaghari, Bahareh
Weddell, Alex S.
Esmaeili, Kamran
Bashir, Imran
Harvey, Terry J.
White, Neil M.
Mirring, Patrick
Wang, Ling
description Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issues associated with cable routing. This article presents an integrated and self-powered wireless system for high-temperature (above 125 °C) environments powered by a thermoelectric generator (TEG) for bearing condition monitoring. A TEG with an internal oil-cooling chamber is proposed to achieve higher-energy output for small temperature gradient recorded in the jet engine in comparison with other TEGs with heat sinks. The experimental results demonstrate that, under a simulated engine environment, the TEG can provide sufficient energy for a wireless sensing system to collect environmental data every 46 s and transmit every 260 s during the critical takeoff phase of the flight and part of cruise.
doi_str_mv 10.1109/TIM.2020.2971288
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2434122499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8979443</ieee_id><sourcerecordid>2434122499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-361ecca34edc0a6ed525f09055e326ae4913ffe5fa8ed53c5ce5142e2af606d13</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89bJ526OtbS2UlFovXgJITupW9rdmmyR_vduafE0DO-9Gd6PkHsGA8bAPC1nbwMOHAbc5IwXxQXpMaXyzGjNL0kPgBWZkUpfk5uU1gCQa5n3yNe0Wn1nS9zuMLp2H5EucBOyj-YXI5bdUqeqXtHFIbW4paGJ1NHF1sWWPqOLR6mqqavpsIo-utDSV2zpuF5VNd6Sq-A2Ce_Os08-J-PlaJrN319mo-E880KINhOaofdOSCw9OI2l4iqAAaVQcO1QGiZCQBVc0WnCK4-KSY7cBQ26ZKJPHk93d7H52WNq7brZx7p7abkUknEujelccHL52KQUMdhdrLoiB8vAHgnajqA9ErRngl3k4RSpEPHfXpjcSCnEH5rkbCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434122499</pqid></control><display><type>article</type><title>High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine</title><source>IEEE Electronic Library (IEL)</source><creator>Zaghari, Bahareh ; Weddell, Alex S. ; Esmaeili, Kamran ; Bashir, Imran ; Harvey, Terry J. ; White, Neil M. ; Mirring, Patrick ; Wang, Ling</creator><creatorcontrib>Zaghari, Bahareh ; Weddell, Alex S. ; Esmaeili, Kamran ; Bashir, Imran ; Harvey, Terry J. ; White, Neil M. ; Mirring, Patrick ; Wang, Ling</creatorcontrib><description>Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issues associated with cable routing. This article presents an integrated and self-powered wireless system for high-temperature (above 125 °C) environments powered by a thermoelectric generator (TEG) for bearing condition monitoring. A TEG with an internal oil-cooling chamber is proposed to achieve higher-energy output for small temperature gradient recorded in the jet engine in comparison with other TEGs with heat sinks. The experimental results demonstrate that, under a simulated engine environment, the TEG can provide sufficient energy for a wireless sensing system to collect environmental data every 46 s and transmit every 260 s during the critical takeoff phase of the flight and part of cruise.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.2971288</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace ; Aircraft ; Aircraft propulsion ; condition health monitoring ; Condition monitoring ; Detection ; Heat sinks ; High temperature ; Jet engines ; Propulsion systems ; self-powered ; Structural health monitoring ; Temperature distribution ; Temperature gradients ; Temperature measurement ; Temperature sensors ; Thermoelectric generators ; Weight ; wireless ; Wireless communication ; Wireless sensor networks ; Wiring</subject><ispartof>IEEE transactions on instrumentation and measurement, 2020-09, Vol.69 (9), p.6165-6174</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-361ecca34edc0a6ed525f09055e326ae4913ffe5fa8ed53c5ce5142e2af606d13</citedby><cites>FETCH-LOGICAL-c333t-361ecca34edc0a6ed525f09055e326ae4913ffe5fa8ed53c5ce5142e2af606d13</cites><orcidid>0000-0002-7830-5459 ; 0000-0001-6596-5565 ; 0000-0003-1532-6452 ; 0000-0002-6763-5460 ; 0000-0002-5600-4671 ; 0000-0002-1222-4381 ; 0000-0002-2894-6784 ; 0000-0002-4589-2036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8979443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8979443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zaghari, Bahareh</creatorcontrib><creatorcontrib>Weddell, Alex S.</creatorcontrib><creatorcontrib>Esmaeili, Kamran</creatorcontrib><creatorcontrib>Bashir, Imran</creatorcontrib><creatorcontrib>Harvey, Terry J.</creatorcontrib><creatorcontrib>White, Neil M.</creatorcontrib><creatorcontrib>Mirring, Patrick</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><title>High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issues associated with cable routing. This article presents an integrated and self-powered wireless system for high-temperature (above 125 °C) environments powered by a thermoelectric generator (TEG) for bearing condition monitoring. A TEG with an internal oil-cooling chamber is proposed to achieve higher-energy output for small temperature gradient recorded in the jet engine in comparison with other TEGs with heat sinks. The experimental results demonstrate that, under a simulated engine environment, the TEG can provide sufficient energy for a wireless sensing system to collect environmental data every 46 s and transmit every 260 s during the critical takeoff phase of the flight and part of cruise.</description><subject>Aerospace</subject><subject>Aircraft</subject><subject>Aircraft propulsion</subject><subject>condition health monitoring</subject><subject>Condition monitoring</subject><subject>Detection</subject><subject>Heat sinks</subject><subject>High temperature</subject><subject>Jet engines</subject><subject>Propulsion systems</subject><subject>self-powered</subject><subject>Structural health monitoring</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Thermoelectric generators</subject><subject>Weight</subject><subject>wireless</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><subject>Wiring</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89bJ526OtbS2UlFovXgJITupW9rdmmyR_vduafE0DO-9Gd6PkHsGA8bAPC1nbwMOHAbc5IwXxQXpMaXyzGjNL0kPgBWZkUpfk5uU1gCQa5n3yNe0Wn1nS9zuMLp2H5EucBOyj-YXI5bdUqeqXtHFIbW4paGJ1NHF1sWWPqOLR6mqqavpsIo-utDSV2zpuF5VNd6Sq-A2Ce_Os08-J-PlaJrN319mo-E880KINhOaofdOSCw9OI2l4iqAAaVQcO1QGiZCQBVc0WnCK4-KSY7cBQ26ZKJPHk93d7H52WNq7brZx7p7abkUknEujelccHL52KQUMdhdrLoiB8vAHgnajqA9ErRngl3k4RSpEPHfXpjcSCnEH5rkbCw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Zaghari, Bahareh</creator><creator>Weddell, Alex S.</creator><creator>Esmaeili, Kamran</creator><creator>Bashir, Imran</creator><creator>Harvey, Terry J.</creator><creator>White, Neil M.</creator><creator>Mirring, Patrick</creator><creator>Wang, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7830-5459</orcidid><orcidid>https://orcid.org/0000-0001-6596-5565</orcidid><orcidid>https://orcid.org/0000-0003-1532-6452</orcidid><orcidid>https://orcid.org/0000-0002-6763-5460</orcidid><orcidid>https://orcid.org/0000-0002-5600-4671</orcidid><orcidid>https://orcid.org/0000-0002-1222-4381</orcidid><orcidid>https://orcid.org/0000-0002-2894-6784</orcidid><orcidid>https://orcid.org/0000-0002-4589-2036</orcidid></search><sort><creationdate>20200901</creationdate><title>High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine</title><author>Zaghari, Bahareh ; Weddell, Alex S. ; Esmaeili, Kamran ; Bashir, Imran ; Harvey, Terry J. ; White, Neil M. ; Mirring, Patrick ; Wang, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-361ecca34edc0a6ed525f09055e326ae4913ffe5fa8ed53c5ce5142e2af606d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace</topic><topic>Aircraft</topic><topic>Aircraft propulsion</topic><topic>condition health monitoring</topic><topic>Condition monitoring</topic><topic>Detection</topic><topic>Heat sinks</topic><topic>High temperature</topic><topic>Jet engines</topic><topic>Propulsion systems</topic><topic>self-powered</topic><topic>Structural health monitoring</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Thermoelectric generators</topic><topic>Weight</topic><topic>wireless</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaghari, Bahareh</creatorcontrib><creatorcontrib>Weddell, Alex S.</creatorcontrib><creatorcontrib>Esmaeili, Kamran</creatorcontrib><creatorcontrib>Bashir, Imran</creatorcontrib><creatorcontrib>Harvey, Terry J.</creatorcontrib><creatorcontrib>White, Neil M.</creatorcontrib><creatorcontrib>Mirring, Patrick</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaghari, Bahareh</au><au>Weddell, Alex S.</au><au>Esmaeili, Kamran</au><au>Bashir, Imran</au><au>Harvey, Terry J.</au><au>White, Neil M.</au><au>Mirring, Patrick</au><au>Wang, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>69</volume><issue>9</issue><spage>6165</spage><epage>6174</epage><pages>6165-6174</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issues associated with cable routing. This article presents an integrated and self-powered wireless system for high-temperature (above 125 °C) environments powered by a thermoelectric generator (TEG) for bearing condition monitoring. A TEG with an internal oil-cooling chamber is proposed to achieve higher-energy output for small temperature gradient recorded in the jet engine in comparison with other TEGs with heat sinks. The experimental results demonstrate that, under a simulated engine environment, the TEG can provide sufficient energy for a wireless sensing system to collect environmental data every 46 s and transmit every 260 s during the critical takeoff phase of the flight and part of cruise.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.2971288</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7830-5459</orcidid><orcidid>https://orcid.org/0000-0001-6596-5565</orcidid><orcidid>https://orcid.org/0000-0003-1532-6452</orcidid><orcidid>https://orcid.org/0000-0002-6763-5460</orcidid><orcidid>https://orcid.org/0000-0002-5600-4671</orcidid><orcidid>https://orcid.org/0000-0002-1222-4381</orcidid><orcidid>https://orcid.org/0000-0002-2894-6784</orcidid><orcidid>https://orcid.org/0000-0002-4589-2036</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2020-09, Vol.69 (9), p.6165-6174
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2434122499
source IEEE Electronic Library (IEL)
subjects Aerospace
Aircraft
Aircraft propulsion
condition health monitoring
Condition monitoring
Detection
Heat sinks
High temperature
Jet engines
Propulsion systems
self-powered
Structural health monitoring
Temperature distribution
Temperature gradients
Temperature measurement
Temperature sensors
Thermoelectric generators
Weight
wireless
Wireless communication
Wireless sensor networks
Wiring
title High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Temperature%20Self-Powered%20Sensing%20System%20for%20a%20Smart%20Bearing%20in%20an%20Aircraft%20Jet%20Engine&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zaghari,%20Bahareh&rft.date=2020-09-01&rft.volume=69&rft.issue=9&rft.spage=6165&rft.epage=6174&rft.pages=6165-6174&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.2971288&rft_dat=%3Cproquest_RIE%3E2434122499%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434122499&rft_id=info:pmid/&rft_ieee_id=8979443&rfr_iscdi=true