High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine
Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issue...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2020-09, Vol.69 (9), p.6165-6174 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6174 |
---|---|
container_issue | 9 |
container_start_page | 6165 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 69 |
creator | Zaghari, Bahareh Weddell, Alex S. Esmaeili, Kamran Bashir, Imran Harvey, Terry J. White, Neil M. Mirring, Patrick Wang, Ling |
description | Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issues associated with cable routing. This article presents an integrated and self-powered wireless system for high-temperature (above 125 °C) environments powered by a thermoelectric generator (TEG) for bearing condition monitoring. A TEG with an internal oil-cooling chamber is proposed to achieve higher-energy output for small temperature gradient recorded in the jet engine in comparison with other TEGs with heat sinks. The experimental results demonstrate that, under a simulated engine environment, the TEG can provide sufficient energy for a wireless sensing system to collect environmental data every 46 s and transmit every 260 s during the critical takeoff phase of the flight and part of cruise. |
doi_str_mv | 10.1109/TIM.2020.2971288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2434122499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8979443</ieee_id><sourcerecordid>2434122499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-361ecca34edc0a6ed525f09055e326ae4913ffe5fa8ed53c5ce5142e2af606d13</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89bJ526OtbS2UlFovXgJITupW9rdmmyR_vduafE0DO-9Gd6PkHsGA8bAPC1nbwMOHAbc5IwXxQXpMaXyzGjNL0kPgBWZkUpfk5uU1gCQa5n3yNe0Wn1nS9zuMLp2H5EucBOyj-YXI5bdUqeqXtHFIbW4paGJ1NHF1sWWPqOLR6mqqavpsIo-utDSV2zpuF5VNd6Sq-A2Ce_Os08-J-PlaJrN319mo-E880KINhOaofdOSCw9OI2l4iqAAaVQcO1QGiZCQBVc0WnCK4-KSY7cBQ26ZKJPHk93d7H52WNq7brZx7p7abkUknEujelccHL52KQUMdhdrLoiB8vAHgnajqA9ErRngl3k4RSpEPHfXpjcSCnEH5rkbCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434122499</pqid></control><display><type>article</type><title>High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine</title><source>IEEE Electronic Library (IEL)</source><creator>Zaghari, Bahareh ; Weddell, Alex S. ; Esmaeili, Kamran ; Bashir, Imran ; Harvey, Terry J. ; White, Neil M. ; Mirring, Patrick ; Wang, Ling</creator><creatorcontrib>Zaghari, Bahareh ; Weddell, Alex S. ; Esmaeili, Kamran ; Bashir, Imran ; Harvey, Terry J. ; White, Neil M. ; Mirring, Patrick ; Wang, Ling</creatorcontrib><description>Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issues associated with cable routing. This article presents an integrated and self-powered wireless system for high-temperature (above 125 °C) environments powered by a thermoelectric generator (TEG) for bearing condition monitoring. A TEG with an internal oil-cooling chamber is proposed to achieve higher-energy output for small temperature gradient recorded in the jet engine in comparison with other TEGs with heat sinks. The experimental results demonstrate that, under a simulated engine environment, the TEG can provide sufficient energy for a wireless sensing system to collect environmental data every 46 s and transmit every 260 s during the critical takeoff phase of the flight and part of cruise.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.2971288</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace ; Aircraft ; Aircraft propulsion ; condition health monitoring ; Condition monitoring ; Detection ; Heat sinks ; High temperature ; Jet engines ; Propulsion systems ; self-powered ; Structural health monitoring ; Temperature distribution ; Temperature gradients ; Temperature measurement ; Temperature sensors ; Thermoelectric generators ; Weight ; wireless ; Wireless communication ; Wireless sensor networks ; Wiring</subject><ispartof>IEEE transactions on instrumentation and measurement, 2020-09, Vol.69 (9), p.6165-6174</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-361ecca34edc0a6ed525f09055e326ae4913ffe5fa8ed53c5ce5142e2af606d13</citedby><cites>FETCH-LOGICAL-c333t-361ecca34edc0a6ed525f09055e326ae4913ffe5fa8ed53c5ce5142e2af606d13</cites><orcidid>0000-0002-7830-5459 ; 0000-0001-6596-5565 ; 0000-0003-1532-6452 ; 0000-0002-6763-5460 ; 0000-0002-5600-4671 ; 0000-0002-1222-4381 ; 0000-0002-2894-6784 ; 0000-0002-4589-2036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8979443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8979443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zaghari, Bahareh</creatorcontrib><creatorcontrib>Weddell, Alex S.</creatorcontrib><creatorcontrib>Esmaeili, Kamran</creatorcontrib><creatorcontrib>Bashir, Imran</creatorcontrib><creatorcontrib>Harvey, Terry J.</creatorcontrib><creatorcontrib>White, Neil M.</creatorcontrib><creatorcontrib>Mirring, Patrick</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><title>High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issues associated with cable routing. This article presents an integrated and self-powered wireless system for high-temperature (above 125 °C) environments powered by a thermoelectric generator (TEG) for bearing condition monitoring. A TEG with an internal oil-cooling chamber is proposed to achieve higher-energy output for small temperature gradient recorded in the jet engine in comparison with other TEGs with heat sinks. The experimental results demonstrate that, under a simulated engine environment, the TEG can provide sufficient energy for a wireless sensing system to collect environmental data every 46 s and transmit every 260 s during the critical takeoff phase of the flight and part of cruise.</description><subject>Aerospace</subject><subject>Aircraft</subject><subject>Aircraft propulsion</subject><subject>condition health monitoring</subject><subject>Condition monitoring</subject><subject>Detection</subject><subject>Heat sinks</subject><subject>High temperature</subject><subject>Jet engines</subject><subject>Propulsion systems</subject><subject>self-powered</subject><subject>Structural health monitoring</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Thermoelectric generators</subject><subject>Weight</subject><subject>wireless</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><subject>Wiring</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89bJ526OtbS2UlFovXgJITupW9rdmmyR_vduafE0DO-9Gd6PkHsGA8bAPC1nbwMOHAbc5IwXxQXpMaXyzGjNL0kPgBWZkUpfk5uU1gCQa5n3yNe0Wn1nS9zuMLp2H5EucBOyj-YXI5bdUqeqXtHFIbW4paGJ1NHF1sWWPqOLR6mqqavpsIo-utDSV2zpuF5VNd6Sq-A2Ce_Os08-J-PlaJrN319mo-E880KINhOaofdOSCw9OI2l4iqAAaVQcO1QGiZCQBVc0WnCK4-KSY7cBQ26ZKJPHk93d7H52WNq7brZx7p7abkUknEujelccHL52KQUMdhdrLoiB8vAHgnajqA9ErRngl3k4RSpEPHfXpjcSCnEH5rkbCw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Zaghari, Bahareh</creator><creator>Weddell, Alex S.</creator><creator>Esmaeili, Kamran</creator><creator>Bashir, Imran</creator><creator>Harvey, Terry J.</creator><creator>White, Neil M.</creator><creator>Mirring, Patrick</creator><creator>Wang, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7830-5459</orcidid><orcidid>https://orcid.org/0000-0001-6596-5565</orcidid><orcidid>https://orcid.org/0000-0003-1532-6452</orcidid><orcidid>https://orcid.org/0000-0002-6763-5460</orcidid><orcidid>https://orcid.org/0000-0002-5600-4671</orcidid><orcidid>https://orcid.org/0000-0002-1222-4381</orcidid><orcidid>https://orcid.org/0000-0002-2894-6784</orcidid><orcidid>https://orcid.org/0000-0002-4589-2036</orcidid></search><sort><creationdate>20200901</creationdate><title>High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine</title><author>Zaghari, Bahareh ; Weddell, Alex S. ; Esmaeili, Kamran ; Bashir, Imran ; Harvey, Terry J. ; White, Neil M. ; Mirring, Patrick ; Wang, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-361ecca34edc0a6ed525f09055e326ae4913ffe5fa8ed53c5ce5142e2af606d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace</topic><topic>Aircraft</topic><topic>Aircraft propulsion</topic><topic>condition health monitoring</topic><topic>Condition monitoring</topic><topic>Detection</topic><topic>Heat sinks</topic><topic>High temperature</topic><topic>Jet engines</topic><topic>Propulsion systems</topic><topic>self-powered</topic><topic>Structural health monitoring</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Thermoelectric generators</topic><topic>Weight</topic><topic>wireless</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaghari, Bahareh</creatorcontrib><creatorcontrib>Weddell, Alex S.</creatorcontrib><creatorcontrib>Esmaeili, Kamran</creatorcontrib><creatorcontrib>Bashir, Imran</creatorcontrib><creatorcontrib>Harvey, Terry J.</creatorcontrib><creatorcontrib>White, Neil M.</creatorcontrib><creatorcontrib>Mirring, Patrick</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaghari, Bahareh</au><au>Weddell, Alex S.</au><au>Esmaeili, Kamran</au><au>Bashir, Imran</au><au>Harvey, Terry J.</au><au>White, Neil M.</au><au>Mirring, Patrick</au><au>Wang, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>69</volume><issue>9</issue><spage>6165</spage><epage>6174</epage><pages>6165-6174</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issues associated with cable routing. This article presents an integrated and self-powered wireless system for high-temperature (above 125 °C) environments powered by a thermoelectric generator (TEG) for bearing condition monitoring. A TEG with an internal oil-cooling chamber is proposed to achieve higher-energy output for small temperature gradient recorded in the jet engine in comparison with other TEGs with heat sinks. The experimental results demonstrate that, under a simulated engine environment, the TEG can provide sufficient energy for a wireless sensing system to collect environmental data every 46 s and transmit every 260 s during the critical takeoff phase of the flight and part of cruise.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.2971288</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7830-5459</orcidid><orcidid>https://orcid.org/0000-0001-6596-5565</orcidid><orcidid>https://orcid.org/0000-0003-1532-6452</orcidid><orcidid>https://orcid.org/0000-0002-6763-5460</orcidid><orcidid>https://orcid.org/0000-0002-5600-4671</orcidid><orcidid>https://orcid.org/0000-0002-1222-4381</orcidid><orcidid>https://orcid.org/0000-0002-2894-6784</orcidid><orcidid>https://orcid.org/0000-0002-4589-2036</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2020-09, Vol.69 (9), p.6165-6174 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2434122499 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace Aircraft Aircraft propulsion condition health monitoring Condition monitoring Detection Heat sinks High temperature Jet engines Propulsion systems self-powered Structural health monitoring Temperature distribution Temperature gradients Temperature measurement Temperature sensors Thermoelectric generators Weight wireless Wireless communication Wireless sensor networks Wiring |
title | High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Temperature%20Self-Powered%20Sensing%20System%20for%20a%20Smart%20Bearing%20in%20an%20Aircraft%20Jet%20Engine&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zaghari,%20Bahareh&rft.date=2020-09-01&rft.volume=69&rft.issue=9&rft.spage=6165&rft.epage=6174&rft.pages=6165-6174&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.2971288&rft_dat=%3Cproquest_RIE%3E2434122499%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434122499&rft_id=info:pmid/&rft_ieee_id=8979443&rfr_iscdi=true |