Nitrogen and fluorine co-doped graphene hydrogel for high-performance supercapacitors

In this work, the nitrogen and fluorine co-doped graphene hydrogel (NFGH) with three-dimensional (3D) porous structure was prepared through a simple one-step hydrothermal method using graphene oxide and ammonium fluoride. The interconnected 3D skeleton porous structure synthesized by the self-assemb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2020-09, Vol.26 (9), p.4705-4712
Hauptverfasser: Yan, Pengtao, Yan, Lei, Gao, Jiaojiao, Zhang, Zan, Gong, Guan, Hou, Meiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4712
container_issue 9
container_start_page 4705
container_title Ionics
container_volume 26
creator Yan, Pengtao
Yan, Lei
Gao, Jiaojiao
Zhang, Zan
Gong, Guan
Hou, Meiling
description In this work, the nitrogen and fluorine co-doped graphene hydrogel (NFGH) with three-dimensional (3D) porous structure was prepared through a simple one-step hydrothermal method using graphene oxide and ammonium fluoride. The interconnected 3D skeleton porous structure synthesized by the self-assembly of graphene can effectively inhibit the agglomeration of graphene, which will provide more diffusion paths for the electrolyte ions. Benefiting from the wettability of nitrogen functional groups, the nitrogen doping effectively reduces the hydrophobicity of electrode caused by the doping of fluorine. Due to the 3D porous structure of NFGH and the incorporation of nitrogen and fluorine, the NFGH exhibits excellent supercapacitive performance. The maximum specific capacitance of NFGH electrode is up to 366 F g −1 in the aqueous electrolyte, and 98% capacitance can be maintained even after 10,000 cycles. These excellent supercapacitive performances demonstrate that the NFGH has a great potential for application in high-performance supercapacitors.
doi_str_mv 10.1007/s11581-020-03593-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2434081975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434081975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-70cf6687feee8ab94a657f1cc1430b1db8b91bef02781d7a14a3c69101eff4883</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbMJI7tLFHFS6pgQ9eW49hJqjYOdrro3-MSJHas5qF774wOIbcI9wggHiJiKZFCDhSKsiqoOCMLlDynIDickwVUTFABTFySqxi3AJxjLhZk895Pwbd2yPTQZG538KEfbGY8bfxom6wNeuxs2nTH5qTbZc6HrOvbjo42pH6vB2OzeEiT0aM2_eRDvCYXTu-ivfmtS7J5fvpcvdL1x8vb6nFNTYHVlP4xjnMpnLVW6rpimpfCoTHICqixqWVdYW0d5EJiIzQyXRheIaB1jklZLMndnDsG_3WwcVJbfwhDOqlyVjCQWIkyqfJZZYKPMVinxtDvdTgqBHXCp2Z8KuFTP_iUSKZiNsUkHlob_qL_cX0D0uJz8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434081975</pqid></control><display><type>article</type><title>Nitrogen and fluorine co-doped graphene hydrogel for high-performance supercapacitors</title><source>SpringerLink Journals</source><creator>Yan, Pengtao ; Yan, Lei ; Gao, Jiaojiao ; Zhang, Zan ; Gong, Guan ; Hou, Meiling</creator><creatorcontrib>Yan, Pengtao ; Yan, Lei ; Gao, Jiaojiao ; Zhang, Zan ; Gong, Guan ; Hou, Meiling</creatorcontrib><description>In this work, the nitrogen and fluorine co-doped graphene hydrogel (NFGH) with three-dimensional (3D) porous structure was prepared through a simple one-step hydrothermal method using graphene oxide and ammonium fluoride. The interconnected 3D skeleton porous structure synthesized by the self-assembly of graphene can effectively inhibit the agglomeration of graphene, which will provide more diffusion paths for the electrolyte ions. Benefiting from the wettability of nitrogen functional groups, the nitrogen doping effectively reduces the hydrophobicity of electrode caused by the doping of fluorine. Due to the 3D porous structure of NFGH and the incorporation of nitrogen and fluorine, the NFGH exhibits excellent supercapacitive performance. The maximum specific capacitance of NFGH electrode is up to 366 F g −1 in the aqueous electrolyte, and 98% capacitance can be maintained even after 10,000 cycles. These excellent supercapacitive performances demonstrate that the NFGH has a great potential for application in high-performance supercapacitors.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03593-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aqueous electrolytes ; Capacitance ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Doping ; Electrochemistry ; Electrodes ; Electrolytes ; Energy Storage ; Fluorine ; Functional groups ; Graphene ; Hydrogels ; Hydrophobicity ; Nitrogen ; Optical and Electronic Materials ; Original Paper ; Renewable and Green Energy ; Self-assembly ; Supercapacitors ; Wettability</subject><ispartof>Ionics, 2020-09, Vol.26 (9), p.4705-4712</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-70cf6687feee8ab94a657f1cc1430b1db8b91bef02781d7a14a3c69101eff4883</citedby><cites>FETCH-LOGICAL-c319t-70cf6687feee8ab94a657f1cc1430b1db8b91bef02781d7a14a3c69101eff4883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-020-03593-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-020-03593-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yan, Pengtao</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Gao, Jiaojiao</creatorcontrib><creatorcontrib>Zhang, Zan</creatorcontrib><creatorcontrib>Gong, Guan</creatorcontrib><creatorcontrib>Hou, Meiling</creatorcontrib><title>Nitrogen and fluorine co-doped graphene hydrogel for high-performance supercapacitors</title><title>Ionics</title><addtitle>Ionics</addtitle><description>In this work, the nitrogen and fluorine co-doped graphene hydrogel (NFGH) with three-dimensional (3D) porous structure was prepared through a simple one-step hydrothermal method using graphene oxide and ammonium fluoride. The interconnected 3D skeleton porous structure synthesized by the self-assembly of graphene can effectively inhibit the agglomeration of graphene, which will provide more diffusion paths for the electrolyte ions. Benefiting from the wettability of nitrogen functional groups, the nitrogen doping effectively reduces the hydrophobicity of electrode caused by the doping of fluorine. Due to the 3D porous structure of NFGH and the incorporation of nitrogen and fluorine, the NFGH exhibits excellent supercapacitive performance. The maximum specific capacitance of NFGH electrode is up to 366 F g −1 in the aqueous electrolyte, and 98% capacitance can be maintained even after 10,000 cycles. These excellent supercapacitive performances demonstrate that the NFGH has a great potential for application in high-performance supercapacitors.</description><subject>Aqueous electrolytes</subject><subject>Capacitance</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Doping</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Fluorine</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>Hydrogels</subject><subject>Hydrophobicity</subject><subject>Nitrogen</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Renewable and Green Energy</subject><subject>Self-assembly</subject><subject>Supercapacitors</subject><subject>Wettability</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbMJI7tLFHFS6pgQ9eW49hJqjYOdrro3-MSJHas5qF774wOIbcI9wggHiJiKZFCDhSKsiqoOCMLlDynIDickwVUTFABTFySqxi3AJxjLhZk895Pwbd2yPTQZG538KEfbGY8bfxom6wNeuxs2nTH5qTbZc6HrOvbjo42pH6vB2OzeEiT0aM2_eRDvCYXTu-ivfmtS7J5fvpcvdL1x8vb6nFNTYHVlP4xjnMpnLVW6rpimpfCoTHICqixqWVdYW0d5EJiIzQyXRheIaB1jklZLMndnDsG_3WwcVJbfwhDOqlyVjCQWIkyqfJZZYKPMVinxtDvdTgqBHXCp2Z8KuFTP_iUSKZiNsUkHlob_qL_cX0D0uJz8A</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Yan, Pengtao</creator><creator>Yan, Lei</creator><creator>Gao, Jiaojiao</creator><creator>Zhang, Zan</creator><creator>Gong, Guan</creator><creator>Hou, Meiling</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Nitrogen and fluorine co-doped graphene hydrogel for high-performance supercapacitors</title><author>Yan, Pengtao ; Yan, Lei ; Gao, Jiaojiao ; Zhang, Zan ; Gong, Guan ; Hou, Meiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-70cf6687feee8ab94a657f1cc1430b1db8b91bef02781d7a14a3c69101eff4883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous electrolytes</topic><topic>Capacitance</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Doping</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Fluorine</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>Hydrogels</topic><topic>Hydrophobicity</topic><topic>Nitrogen</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Renewable and Green Energy</topic><topic>Self-assembly</topic><topic>Supercapacitors</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Pengtao</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Gao, Jiaojiao</creatorcontrib><creatorcontrib>Zhang, Zan</creatorcontrib><creatorcontrib>Gong, Guan</creatorcontrib><creatorcontrib>Hou, Meiling</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Pengtao</au><au>Yan, Lei</au><au>Gao, Jiaojiao</au><au>Zhang, Zan</au><au>Gong, Guan</au><au>Hou, Meiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen and fluorine co-doped graphene hydrogel for high-performance supercapacitors</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>26</volume><issue>9</issue><spage>4705</spage><epage>4712</epage><pages>4705-4712</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>In this work, the nitrogen and fluorine co-doped graphene hydrogel (NFGH) with three-dimensional (3D) porous structure was prepared through a simple one-step hydrothermal method using graphene oxide and ammonium fluoride. The interconnected 3D skeleton porous structure synthesized by the self-assembly of graphene can effectively inhibit the agglomeration of graphene, which will provide more diffusion paths for the electrolyte ions. Benefiting from the wettability of nitrogen functional groups, the nitrogen doping effectively reduces the hydrophobicity of electrode caused by the doping of fluorine. Due to the 3D porous structure of NFGH and the incorporation of nitrogen and fluorine, the NFGH exhibits excellent supercapacitive performance. The maximum specific capacitance of NFGH electrode is up to 366 F g −1 in the aqueous electrolyte, and 98% capacitance can be maintained even after 10,000 cycles. These excellent supercapacitive performances demonstrate that the NFGH has a great potential for application in high-performance supercapacitors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03593-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2020-09, Vol.26 (9), p.4705-4712
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2434081975
source SpringerLink Journals
subjects Aqueous electrolytes
Capacitance
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Doping
Electrochemistry
Electrodes
Electrolytes
Energy Storage
Fluorine
Functional groups
Graphene
Hydrogels
Hydrophobicity
Nitrogen
Optical and Electronic Materials
Original Paper
Renewable and Green Energy
Self-assembly
Supercapacitors
Wettability
title Nitrogen and fluorine co-doped graphene hydrogel for high-performance supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20and%20fluorine%20co-doped%20graphene%20hydrogel%20for%20high-performance%20supercapacitors&rft.jtitle=Ionics&rft.au=Yan,%20Pengtao&rft.date=2020-09-01&rft.volume=26&rft.issue=9&rft.spage=4705&rft.epage=4712&rft.pages=4705-4712&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03593-7&rft_dat=%3Cproquest_cross%3E2434081975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434081975&rft_id=info:pmid/&rfr_iscdi=true