Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression
Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade gen...
Gespeichert in:
Veröffentlicht in: | Communications biology 2020-08, Vol.3 (1), p.432, Article 432 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 432 |
container_title | Communications biology |
container_volume | 3 |
creator | Yano, Ryoichi Ariizumi, Tohru Nonaka, Satoko Kawazu, Yoichi Zhong, Silin Mueller, Lukas Giovannoni, James J. Rose, Jocelyn K. C. Ezura, Hiroshi |
description | Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns (
r
> 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression.
Ryoichi Yano et al. report a Nanopore-based reference genome assembly of muskmelon—a fruit known for its many cultivated varieties, including cantaloupe and honeydew—using the Japanese Harukei-3 cultivar. They identify structural genetic variation by comparing the reference to several melon genome assemblies and investigate tissue-wide gene expression patterns by RNA sequencing. |
doi_str_mv | 10.1038/s42003-020-01172-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2433603113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433603113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-67499c630308ce3e600598690061240998dc544c1f53033351678657f6e46c73</originalsourceid><addsrcrecordid>eNp9kUtLLDEQhYMoKqN_wIUE7rq18uh0ZyPI4AsEN-5DzFSP0e6kTXqGe_-90fF1N65S5Jz66sAh5IjBCQPRnmbJAUQFHCpgrOEVbJF9LrSuhJJ8-8e8Rw5zfgIAprVWQu6SPcEbzWsF-2Q9j8Nok538GukSQxy8yzR2dFjl5wH7GGjCNdo-U0vHOGGYvO1pij3SLqYiTilOyYY8xhxDpj7Q6RHpEBe-865wC6HgChop_h0T5ly-DshOV5h4-PHOyP3lxf38urq9u7qZn99Wrm7lVKlGau2UAAGtQ4EKoNat0gCKcQlatwtXS-lYVxePEDVTTavqplMolWvEjJxtsOPqYcCFK-mT7c2Y_GDTPxOtN_8rwT-aZVybRnLVFuCM_PkApPiywjyZp7hKoUQ2XAqhQDD25uIbl0sx54Td1wUG5q0ts2nLlLbMe1sGytLxz2xfK5_dFIPYGHKRwhLT9-1fsK-rwaEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433603113</pqid></control><display><type>article</type><title>Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yano, Ryoichi ; Ariizumi, Tohru ; Nonaka, Satoko ; Kawazu, Yoichi ; Zhong, Silin ; Mueller, Lukas ; Giovannoni, James J. ; Rose, Jocelyn K. C. ; Ezura, Hiroshi</creator><creatorcontrib>Yano, Ryoichi ; Ariizumi, Tohru ; Nonaka, Satoko ; Kawazu, Yoichi ; Zhong, Silin ; Mueller, Lukas ; Giovannoni, James J. ; Rose, Jocelyn K. C. ; Ezura, Hiroshi</creatorcontrib><description>Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns (
r
> 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression.
Ryoichi Yano et al. report a Nanopore-based reference genome assembly of muskmelon—a fruit known for its many cultivated varieties, including cantaloupe and honeydew—using the Japanese Harukei-3 cultivar. They identify structural genetic variation by comparing the reference to several melon genome assemblies and investigate tissue-wide gene expression patterns by RNA sequencing.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-01172-0</identifier><identifier>PMID: 32792560</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/91 ; 45/23 ; 631/181/735 ; 631/449/1870 ; 631/449/2491/2174 ; 631/61/212/748 ; Biology ; Biomedical and Life Sciences ; Copy number ; Cultivars ; Fruits ; Gene expression ; Genetic diversity ; Genomes ; Life Sciences ; Ribonucleic acid ; Ripening ; RNA</subject><ispartof>Communications biology, 2020-08, Vol.3 (1), p.432, Article 432</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-67499c630308ce3e600598690061240998dc544c1f53033351678657f6e46c73</citedby><cites>FETCH-LOGICAL-c584t-67499c630308ce3e600598690061240998dc544c1f53033351678657f6e46c73</cites><orcidid>0000-0001-9393-3229 ; 0000-0003-3221-2369 ; 0000-0002-0972-2515 ; 0000-0002-6714-4127 ; 0000-0003-1881-9631 ; 0000-0002-0198-7383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426833/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426833/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,41103,42172,51559,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32792560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yano, Ryoichi</creatorcontrib><creatorcontrib>Ariizumi, Tohru</creatorcontrib><creatorcontrib>Nonaka, Satoko</creatorcontrib><creatorcontrib>Kawazu, Yoichi</creatorcontrib><creatorcontrib>Zhong, Silin</creatorcontrib><creatorcontrib>Mueller, Lukas</creatorcontrib><creatorcontrib>Giovannoni, James J.</creatorcontrib><creatorcontrib>Rose, Jocelyn K. C.</creatorcontrib><creatorcontrib>Ezura, Hiroshi</creatorcontrib><title>Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns (
r
> 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression.
Ryoichi Yano et al. report a Nanopore-based reference genome assembly of muskmelon—a fruit known for its many cultivated varieties, including cantaloupe and honeydew—using the Japanese Harukei-3 cultivar. They identify structural genetic variation by comparing the reference to several melon genome assemblies and investigate tissue-wide gene expression patterns by RNA sequencing.</description><subject>38/91</subject><subject>45/23</subject><subject>631/181/735</subject><subject>631/449/1870</subject><subject>631/449/2491/2174</subject><subject>631/61/212/748</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Copy number</subject><subject>Cultivars</subject><subject>Fruits</subject><subject>Gene expression</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Ribonucleic acid</subject><subject>Ripening</subject><subject>RNA</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLLDEQhYMoKqN_wIUE7rq18uh0ZyPI4AsEN-5DzFSP0e6kTXqGe_-90fF1N65S5Jz66sAh5IjBCQPRnmbJAUQFHCpgrOEVbJF9LrSuhJJ8-8e8Rw5zfgIAprVWQu6SPcEbzWsF-2Q9j8Nok538GukSQxy8yzR2dFjl5wH7GGjCNdo-U0vHOGGYvO1pij3SLqYiTilOyYY8xhxDpj7Q6RHpEBe-865wC6HgChop_h0T5ly-DshOV5h4-PHOyP3lxf38urq9u7qZn99Wrm7lVKlGau2UAAGtQ4EKoNat0gCKcQlatwtXS-lYVxePEDVTTavqplMolWvEjJxtsOPqYcCFK-mT7c2Y_GDTPxOtN_8rwT-aZVybRnLVFuCM_PkApPiywjyZp7hKoUQ2XAqhQDD25uIbl0sx54Td1wUG5q0ts2nLlLbMe1sGytLxz2xfK5_dFIPYGHKRwhLT9-1fsK-rwaEY</recordid><startdate>20200813</startdate><enddate>20200813</enddate><creator>Yano, Ryoichi</creator><creator>Ariizumi, Tohru</creator><creator>Nonaka, Satoko</creator><creator>Kawazu, Yoichi</creator><creator>Zhong, Silin</creator><creator>Mueller, Lukas</creator><creator>Giovannoni, James J.</creator><creator>Rose, Jocelyn K. C.</creator><creator>Ezura, Hiroshi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9393-3229</orcidid><orcidid>https://orcid.org/0000-0003-3221-2369</orcidid><orcidid>https://orcid.org/0000-0002-0972-2515</orcidid><orcidid>https://orcid.org/0000-0002-6714-4127</orcidid><orcidid>https://orcid.org/0000-0003-1881-9631</orcidid><orcidid>https://orcid.org/0000-0002-0198-7383</orcidid></search><sort><creationdate>20200813</creationdate><title>Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression</title><author>Yano, Ryoichi ; Ariizumi, Tohru ; Nonaka, Satoko ; Kawazu, Yoichi ; Zhong, Silin ; Mueller, Lukas ; Giovannoni, James J. ; Rose, Jocelyn K. C. ; Ezura, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-67499c630308ce3e600598690061240998dc544c1f53033351678657f6e46c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/91</topic><topic>45/23</topic><topic>631/181/735</topic><topic>631/449/1870</topic><topic>631/449/2491/2174</topic><topic>631/61/212/748</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Copy number</topic><topic>Cultivars</topic><topic>Fruits</topic><topic>Gene expression</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Ribonucleic acid</topic><topic>Ripening</topic><topic>RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yano, Ryoichi</creatorcontrib><creatorcontrib>Ariizumi, Tohru</creatorcontrib><creatorcontrib>Nonaka, Satoko</creatorcontrib><creatorcontrib>Kawazu, Yoichi</creatorcontrib><creatorcontrib>Zhong, Silin</creatorcontrib><creatorcontrib>Mueller, Lukas</creatorcontrib><creatorcontrib>Giovannoni, James J.</creatorcontrib><creatorcontrib>Rose, Jocelyn K. C.</creatorcontrib><creatorcontrib>Ezura, Hiroshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yano, Ryoichi</au><au>Ariizumi, Tohru</au><au>Nonaka, Satoko</au><au>Kawazu, Yoichi</au><au>Zhong, Silin</au><au>Mueller, Lukas</au><au>Giovannoni, James J.</au><au>Rose, Jocelyn K. C.</au><au>Ezura, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-08-13</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>432</spage><pages>432-</pages><artnum>432</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns (
r
> 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression.
Ryoichi Yano et al. report a Nanopore-based reference genome assembly of muskmelon—a fruit known for its many cultivated varieties, including cantaloupe and honeydew—using the Japanese Harukei-3 cultivar. They identify structural genetic variation by comparing the reference to several melon genome assemblies and investigate tissue-wide gene expression patterns by RNA sequencing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32792560</pmid><doi>10.1038/s42003-020-01172-0</doi><orcidid>https://orcid.org/0000-0001-9393-3229</orcidid><orcidid>https://orcid.org/0000-0003-3221-2369</orcidid><orcidid>https://orcid.org/0000-0002-0972-2515</orcidid><orcidid>https://orcid.org/0000-0002-6714-4127</orcidid><orcidid>https://orcid.org/0000-0003-1881-9631</orcidid><orcidid>https://orcid.org/0000-0002-0198-7383</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2020-08, Vol.3 (1), p.432, Article 432 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_proquest_journals_2433603113 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 38/91 45/23 631/181/735 631/449/1870 631/449/2491/2174 631/61/212/748 Biology Biomedical and Life Sciences Copy number Cultivars Fruits Gene expression Genetic diversity Genomes Life Sciences Ribonucleic acid Ripening RNA |
title | Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20genomics%20of%20muskmelon%20reveals%20a%20potential%20role%20for%20retrotransposons%20in%20the%20modification%20of%20gene%20expression&rft.jtitle=Communications%20biology&rft.au=Yano,%20Ryoichi&rft.date=2020-08-13&rft.volume=3&rft.issue=1&rft.spage=432&rft.pages=432-&rft.artnum=432&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-01172-0&rft_dat=%3Cproquest_pubme%3E2433603113%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433603113&rft_id=info:pmid/32792560&rfr_iscdi=true |