Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression

Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-08, Vol.3 (1), p.432, Article 432
Hauptverfasser: Yano, Ryoichi, Ariizumi, Tohru, Nonaka, Satoko, Kawazu, Yoichi, Zhong, Silin, Mueller, Lukas, Giovannoni, James J., Rose, Jocelyn K. C., Ezura, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 432
container_title Communications biology
container_volume 3
creator Yano, Ryoichi
Ariizumi, Tohru
Nonaka, Satoko
Kawazu, Yoichi
Zhong, Silin
Mueller, Lukas
Giovannoni, James J.
Rose, Jocelyn K. C.
Ezura, Hiroshi
description Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns ( r  > 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression. Ryoichi Yano et al. report a Nanopore-based reference genome assembly of muskmelon—a fruit known for its many cultivated varieties, including cantaloupe and honeydew—using the Japanese Harukei-3 cultivar. They identify structural genetic variation by comparing the reference to several melon genome assemblies and investigate tissue-wide gene expression patterns by RNA sequencing.
doi_str_mv 10.1038/s42003-020-01172-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2433603113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433603113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-67499c630308ce3e600598690061240998dc544c1f53033351678657f6e46c73</originalsourceid><addsrcrecordid>eNp9kUtLLDEQhYMoKqN_wIUE7rq18uh0ZyPI4AsEN-5DzFSP0e6kTXqGe_-90fF1N65S5Jz66sAh5IjBCQPRnmbJAUQFHCpgrOEVbJF9LrSuhJJ8-8e8Rw5zfgIAprVWQu6SPcEbzWsF-2Q9j8Nok538GukSQxy8yzR2dFjl5wH7GGjCNdo-U0vHOGGYvO1pij3SLqYiTilOyYY8xhxDpj7Q6RHpEBe-865wC6HgChop_h0T5ly-DshOV5h4-PHOyP3lxf38urq9u7qZn99Wrm7lVKlGau2UAAGtQ4EKoNat0gCKcQlatwtXS-lYVxePEDVTTavqplMolWvEjJxtsOPqYcCFK-mT7c2Y_GDTPxOtN_8rwT-aZVybRnLVFuCM_PkApPiywjyZp7hKoUQ2XAqhQDD25uIbl0sx54Td1wUG5q0ts2nLlLbMe1sGytLxz2xfK5_dFIPYGHKRwhLT9-1fsK-rwaEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433603113</pqid></control><display><type>article</type><title>Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yano, Ryoichi ; Ariizumi, Tohru ; Nonaka, Satoko ; Kawazu, Yoichi ; Zhong, Silin ; Mueller, Lukas ; Giovannoni, James J. ; Rose, Jocelyn K. C. ; Ezura, Hiroshi</creator><creatorcontrib>Yano, Ryoichi ; Ariizumi, Tohru ; Nonaka, Satoko ; Kawazu, Yoichi ; Zhong, Silin ; Mueller, Lukas ; Giovannoni, James J. ; Rose, Jocelyn K. C. ; Ezura, Hiroshi</creatorcontrib><description>Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns ( r  &gt; 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression. Ryoichi Yano et al. report a Nanopore-based reference genome assembly of muskmelon—a fruit known for its many cultivated varieties, including cantaloupe and honeydew—using the Japanese Harukei-3 cultivar. They identify structural genetic variation by comparing the reference to several melon genome assemblies and investigate tissue-wide gene expression patterns by RNA sequencing.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-01172-0</identifier><identifier>PMID: 32792560</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/91 ; 45/23 ; 631/181/735 ; 631/449/1870 ; 631/449/2491/2174 ; 631/61/212/748 ; Biology ; Biomedical and Life Sciences ; Copy number ; Cultivars ; Fruits ; Gene expression ; Genetic diversity ; Genomes ; Life Sciences ; Ribonucleic acid ; Ripening ; RNA</subject><ispartof>Communications biology, 2020-08, Vol.3 (1), p.432, Article 432</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-67499c630308ce3e600598690061240998dc544c1f53033351678657f6e46c73</citedby><cites>FETCH-LOGICAL-c584t-67499c630308ce3e600598690061240998dc544c1f53033351678657f6e46c73</cites><orcidid>0000-0001-9393-3229 ; 0000-0003-3221-2369 ; 0000-0002-0972-2515 ; 0000-0002-6714-4127 ; 0000-0003-1881-9631 ; 0000-0002-0198-7383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426833/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426833/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,41103,42172,51559,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32792560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yano, Ryoichi</creatorcontrib><creatorcontrib>Ariizumi, Tohru</creatorcontrib><creatorcontrib>Nonaka, Satoko</creatorcontrib><creatorcontrib>Kawazu, Yoichi</creatorcontrib><creatorcontrib>Zhong, Silin</creatorcontrib><creatorcontrib>Mueller, Lukas</creatorcontrib><creatorcontrib>Giovannoni, James J.</creatorcontrib><creatorcontrib>Rose, Jocelyn K. C.</creatorcontrib><creatorcontrib>Ezura, Hiroshi</creatorcontrib><title>Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns ( r  &gt; 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression. Ryoichi Yano et al. report a Nanopore-based reference genome assembly of muskmelon—a fruit known for its many cultivated varieties, including cantaloupe and honeydew—using the Japanese Harukei-3 cultivar. They identify structural genetic variation by comparing the reference to several melon genome assemblies and investigate tissue-wide gene expression patterns by RNA sequencing.</description><subject>38/91</subject><subject>45/23</subject><subject>631/181/735</subject><subject>631/449/1870</subject><subject>631/449/2491/2174</subject><subject>631/61/212/748</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Copy number</subject><subject>Cultivars</subject><subject>Fruits</subject><subject>Gene expression</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Ribonucleic acid</subject><subject>Ripening</subject><subject>RNA</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLLDEQhYMoKqN_wIUE7rq18uh0ZyPI4AsEN-5DzFSP0e6kTXqGe_-90fF1N65S5Jz66sAh5IjBCQPRnmbJAUQFHCpgrOEVbJF9LrSuhJJ8-8e8Rw5zfgIAprVWQu6SPcEbzWsF-2Q9j8Nok538GukSQxy8yzR2dFjl5wH7GGjCNdo-U0vHOGGYvO1pij3SLqYiTilOyYY8xhxDpj7Q6RHpEBe-865wC6HgChop_h0T5ly-DshOV5h4-PHOyP3lxf38urq9u7qZn99Wrm7lVKlGau2UAAGtQ4EKoNat0gCKcQlatwtXS-lYVxePEDVTTavqplMolWvEjJxtsOPqYcCFK-mT7c2Y_GDTPxOtN_8rwT-aZVybRnLVFuCM_PkApPiywjyZp7hKoUQ2XAqhQDD25uIbl0sx54Td1wUG5q0ts2nLlLbMe1sGytLxz2xfK5_dFIPYGHKRwhLT9-1fsK-rwaEY</recordid><startdate>20200813</startdate><enddate>20200813</enddate><creator>Yano, Ryoichi</creator><creator>Ariizumi, Tohru</creator><creator>Nonaka, Satoko</creator><creator>Kawazu, Yoichi</creator><creator>Zhong, Silin</creator><creator>Mueller, Lukas</creator><creator>Giovannoni, James J.</creator><creator>Rose, Jocelyn K. C.</creator><creator>Ezura, Hiroshi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9393-3229</orcidid><orcidid>https://orcid.org/0000-0003-3221-2369</orcidid><orcidid>https://orcid.org/0000-0002-0972-2515</orcidid><orcidid>https://orcid.org/0000-0002-6714-4127</orcidid><orcidid>https://orcid.org/0000-0003-1881-9631</orcidid><orcidid>https://orcid.org/0000-0002-0198-7383</orcidid></search><sort><creationdate>20200813</creationdate><title>Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression</title><author>Yano, Ryoichi ; Ariizumi, Tohru ; Nonaka, Satoko ; Kawazu, Yoichi ; Zhong, Silin ; Mueller, Lukas ; Giovannoni, James J. ; Rose, Jocelyn K. C. ; Ezura, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-67499c630308ce3e600598690061240998dc544c1f53033351678657f6e46c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/91</topic><topic>45/23</topic><topic>631/181/735</topic><topic>631/449/1870</topic><topic>631/449/2491/2174</topic><topic>631/61/212/748</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Copy number</topic><topic>Cultivars</topic><topic>Fruits</topic><topic>Gene expression</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Ribonucleic acid</topic><topic>Ripening</topic><topic>RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yano, Ryoichi</creatorcontrib><creatorcontrib>Ariizumi, Tohru</creatorcontrib><creatorcontrib>Nonaka, Satoko</creatorcontrib><creatorcontrib>Kawazu, Yoichi</creatorcontrib><creatorcontrib>Zhong, Silin</creatorcontrib><creatorcontrib>Mueller, Lukas</creatorcontrib><creatorcontrib>Giovannoni, James J.</creatorcontrib><creatorcontrib>Rose, Jocelyn K. C.</creatorcontrib><creatorcontrib>Ezura, Hiroshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yano, Ryoichi</au><au>Ariizumi, Tohru</au><au>Nonaka, Satoko</au><au>Kawazu, Yoichi</au><au>Zhong, Silin</au><au>Mueller, Lukas</au><au>Giovannoni, James J.</au><au>Rose, Jocelyn K. C.</au><au>Ezura, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-08-13</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>432</spage><pages>432-</pages><artnum>432</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Melon exhibits substantial natural variation especially in fruit ripening physiology, including both climacteric (ethylene-producing) and non-climacteric types. However, genomic mechanisms underlying such variation are not yet fully understood. Here, we report an Oxford Nanopore-based high-grade genome reference in the semi-climacteric cultivar Harukei-3 (378 Mb + 33,829 protein-coding genes), with an update of tissue-wide RNA-seq atlas in the Melonet-DB database. Comparison between Harukei-3 and DHL92, the first published melon genome, enabled identification of 24,758 one-to-one orthologue gene pairs, whereas others were candidates of copy number variation or presence/absence polymorphisms (PAPs). Further comparison based on 10 melon genome assemblies identified genome-wide PAPs of 415 retrotransposon Gag-like sequences. Of these, 160 showed fruit ripening-inducible expression, with 59.4% of the neighboring genes showing similar expression patterns ( r  &gt; 0.8). Our results suggest that retrotransposons contributed to the modification of gene expression during diversification of melon genomes, and may affect fruit ripening-inducible gene expression. Ryoichi Yano et al. report a Nanopore-based reference genome assembly of muskmelon—a fruit known for its many cultivated varieties, including cantaloupe and honeydew—using the Japanese Harukei-3 cultivar. They identify structural genetic variation by comparing the reference to several melon genome assemblies and investigate tissue-wide gene expression patterns by RNA sequencing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32792560</pmid><doi>10.1038/s42003-020-01172-0</doi><orcidid>https://orcid.org/0000-0001-9393-3229</orcidid><orcidid>https://orcid.org/0000-0003-3221-2369</orcidid><orcidid>https://orcid.org/0000-0002-0972-2515</orcidid><orcidid>https://orcid.org/0000-0002-6714-4127</orcidid><orcidid>https://orcid.org/0000-0003-1881-9631</orcidid><orcidid>https://orcid.org/0000-0002-0198-7383</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2020-08, Vol.3 (1), p.432, Article 432
issn 2399-3642
2399-3642
language eng
recordid cdi_proquest_journals_2433603113
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 38/91
45/23
631/181/735
631/449/1870
631/449/2491/2174
631/61/212/748
Biology
Biomedical and Life Sciences
Copy number
Cultivars
Fruits
Gene expression
Genetic diversity
Genomes
Life Sciences
Ribonucleic acid
Ripening
RNA
title Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20genomics%20of%20muskmelon%20reveals%20a%20potential%20role%20for%20retrotransposons%20in%20the%20modification%20of%20gene%20expression&rft.jtitle=Communications%20biology&rft.au=Yano,%20Ryoichi&rft.date=2020-08-13&rft.volume=3&rft.issue=1&rft.spage=432&rft.pages=432-&rft.artnum=432&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-01172-0&rft_dat=%3Cproquest_pubme%3E2433603113%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433603113&rft_id=info:pmid/32792560&rfr_iscdi=true